

Agilent U1253B True RMS OLED-Multimeter

Benutzer- und Servicehandbuch

Hinweise

© Agilent Technologies, Inc., 2009-2012

Vervielfältigung, Anpassung oder Übersetzung ist gemäß den Bestimmungen des Urheberrechtsgesetzes ohne vorherige schriftliche Genehmigung durch die Firma Agilent Technologies verboten.

Handbuchteilenummer

U1253-90036

Ausgabe

Siebte Auflage, 12. September 2012

Agilent Technologies, Inc. 5301 Stevens Creek Blvd. Santa Clara, CA 95051 USA

Hinweise zu Marken

Pentium ist eine in den USA eingetragene Marke der Intel Corporation.

Microsoft, Visual Studio, Windows und MS Windows sind Marken der Microsoft Corporation in den USA und/oder anderen Ländern.

Zubehörgarantie

Agilent bietet eine Garantie für Produktzubehör von bis zu 3 Monaten ab dem Datum der Abnahme durch den Endbenutzer.

Standardkalibrierungsservice (optional)

Agilent bietet einen optionalen Kalibrierungsservicevertrag für eine Dauer von 3 Jahren ab dem Datum der Abnahme durch den Endbenutzer.

Garantie

Das in diesem Dokument enthaltene Material wird im vorliegenden Zustand zur Verfügung gestellt und kann in zukünftigen Ausgaben ohne vorherige Ankündigung geändert werden. Agilent Technologies übernimmt keinerlei Gewährleistung für die in dieser Dokumentation enthaltenen Informationen, insbesondere nicht für deren Eignung oder Tauglichkeit für einen bestimmten Zweck. Agilent Technologies übernimmt keine Haftung für Fehler, die in diesem Dokument enthalten sind, und für zufällige Schäden oder Folgeschäden im Zusammenhang mit der Lieferung. Ingebrauchnahme oder Benutzung dieser Dokumentation, Falls zwischen Agilent und dem Benutzer eine schriftliche Vereinbarung mit abweichenden Gewährleistungsbedingungen hinsichtlich der in diesem Dokument enthaltenen Informationen existiert, so gelten diese schriftlich vereinbarten Bedingungen.

Technologielizenzen

Die in diesem Dokument beschriebene Hardware und/oder Software wird unter einer Lizenz geliefert und darf nur entsprechend den Lizenzbedingungen genutzt oder kopiert werden.

Nutzungsbeschränkungen

U.S. Government Restricted Rights (eingeschränkte Rechte für die US-Regierung). Die der Bundesregierung gewährten Rechte bezüglich Software und technischer Daten gehen nicht über diese Rechte hinaus, die üblicherweise Endbenutzern gewährt werden. Agilent stellt diese handelsübliche kommerzielle Lizenz für Software und technische Daten gemäß FAR 12.211 (technische Daten) und 12.212 (Computer-Software) – für das US-Verteidigungsministerium – gemäß DFARS 252.227-7015 (technische Daten – kommerzielle Produkte) und DFARS 227.7202-3 (Rechte an kommerzieller Computer-Software oder Computer-Software-Dokumentation) bereit.

Sicherheitshinweise

VORSICHT

Ein Hinweis mit der Überschrift

VORSICHT weist auf eine Gefahr hin.
Er macht auf einen Betriebsablauf
oder ein Verfahren aufmerksam, der
bzw. das bei unsachgemäßer
Durchführung zur Beschädigung des
Produkts oder zum Verlust wichtiger
Daten führen kann. Setzen Sie den
Vorgang nach dem Hinweis

VORSICHT nicht fort, wenn Sie die
darin aufgeführten Hinweise nicht
vollständig verstanden haben und
einhalten können.

WARNUNG

Eine WARNUNG weist auf eine Gefahr hin. Sie macht auf einen Betriebsablauf oder ein Verfahren aufmerksam, der bzw. das bei unsachgemäßer Durchführung zu Verletzungen oder zum Tod führen kann. Setzen Sie den Vorgang nach einem Hinweis mit der Überschrift WARNUNG nicht fort, wenn Sie die darin aufgeführten Hinweise nicht vollständig verstanden haben und einhalten können.

Sicherheitssymbole

Die folgenden Symbole auf dem Gerät und in der Dokumentation deuten auf Vorkehrungen hin, die ausgeführt werden müssen, um den sicheren Betrieb dieses Geräts zu gewährleisten.

	Gleichstrom (DC)	\bigcirc	Aus (Netzteil)
~	Wechselstrom (AC)		Ein (Netzteil)
\sim	Sowohl Gleich- als auch Wechselstrom		Vorsicht, Stromschlagrisiko
3~	Drei-Phasen-Wechselstrom	\triangle	Vorsicht, Stromschlagrisiko (spezifische Warn- und Vorsichtshinweise finden Sie im Handbuch).
=	Anschluss an Schutzerde (Masse)		Vorsicht, heiße Oberfläche
	Schutzleiteranschluss		Aus-Stellung eines bistabilen Druckknopfes
<i>→</i>	Rahmen- oder Gehäuseanschluss		Ein-Stellung eines bistabilen Druckknopfes
\$	Equipotenzialität	CAT III 1000 V	Kategorie III 1000 V Überspannungsschutz
	Ausrüstung ständig durch Doppelisolierung oder verstärkte Isolierung geschützt.	CAT IV 600 V	Kategorie IV 600 V Überspannungsschutz

Allgemeine Sicherheitsinformationen

Die folgenden allgemeinen Sicherheitsvorkehrungen müssen während aller Phasen des Betriebs, des Services und der Reparatur dieses Instruments beachtet werden. Durch Missachtung dieser Sicherheitsvorkehrungen oder bestimmter Warnungen an einer anderen Stelle dieses Handbuchs werden die Sicherheitsstandards beim Entwurf, bei der Bereitstellung und bei der vorgesehenen Verwendung dieses Instruments verletzt. Agilent Technologies übernimmt bei Missachtung dieser Voraussetzungen durch den Kunden keine Haftung.

VORSICHT

- Trennen Sie den Schaltkreis von der Spannungsversorgung und entladen Sie alle Hochspannungskondensatoren im Schaltkreis, bevor Sie Widerstands-, Durchgangs-, Dioden- oder Kapazitätstests durchführen.
- · Verwenden Sie die richtigen Anschlüsse, Funktionen und Bereiche für die Messungen.
- · Messen Sie nie die Spannung, wenn die Strommessung ausgewählt ist.
- Verwenden Sie nur empfohlene Batterien. Stellen Sie das ordnungsgemäße Einlegen der Batterie in das Multimeter sicher und achten Sie auf die richtige Polarität.
- Trennen Sie die Testleitungen während der Akkuladezeit von allen Anschlüssen.

WARNUNG

- Wenn Sie über 60 V DC, 30 V AC RMS oder 42,4 V AC V Spitzenwerte arbeiten, lassen Sie Vorsicht walten – hier besteht die Gefahr eines elektrischen Schlages.
- Messen Sie nicht mehr als die Nennspannung (wie auf dem Multimeter gekennzeichnet ist) zwischen den Anschlüssen oder zwischen dem Anschluss und der Erdung.
- Überprüfen Sie den Betrieb des Multimeters genau, indem Sie eine bekannte Spannung messen.
- Trennen Sie bei Strommessungen den Schaltkreis vor der Verbindung mit dem Multimeter von der Stromversorgung. Schalten Sie das Multimeter immer parallel mit dem Schaltkreis.
- Wenn Sie die Sonden verbinden, verbinden Sie immer erst die allgemeine Messsonde.
 Wenn Sie die Sonden trennen, trennen Sie immer erst die stromführende Messsonde.
- Lösen Sie erst die Messsonden vom Messgerät, bevor Sie die Batteriefachabdeckung öffnen.
- Verwenden Sie das Messgerät nicht, wenn die Batteriefachabdeckung oder ein Teil davon fehlt oder nicht fest sitzt.
- Ersetzen Sie die Batterie sobald die Anzeige des Batteriestatus auf dem Bildschirm blinkt. Dadurch werden falsche Messungen vermieden, die möglicherweise zu einem Stromschlag oder zu einer Verletzung führen können.
- Arbeiten Sie mit dem Produkt nicht in einer explosiven Umgebung oder in der Nähe von entflammbaren Gasen oder Dämpfen.
- Untersuchen Sie den Koffer auf Risse oder fehlende Kunststoffteile. Richten Sie Ihre Aufmerksamkeit auf die Isolierung um die Stecker. Verwenden Sie das Multimeter nicht, wenn es beschädigt ist.
- Untersuchen Sie die Testsonden auf beschädigte Isolierung oder auf offenes Metall und überprüfen Sie den Durchgang. Verwenden Sie die Messsonden nicht, wenn sie beschädigt sind.
- Verwenden Sie keine anderen AC-Ladeadapter außer denen, die von Agilent für das Produkt zertifiziert sind.
- Verwenden Sie keine reparierten Sicherungen oder Kurzschluss-Sicherungshalter.
 Für den kontinuierlichen Schutz gegen Feuer, ersetzen Sie die Sicherungen nur durch Sicherungen derselben Spannung und Stromstärke sowie des empfohlenen Typs.
- Führen Sie keine Servicemaßnahmen oder Anpassungen alleine durch. Unter bestimmten Umständen kann gefährliche Spannung vorhanden sein, auch wenn die Geräte ausgeschaltet sind. Um die Gefahren eines elektrischen Schlags weitestgehend zu vermeiden, dürfen Servicemitarbeiter interne Wartungs- oder Einstellungsarbeiten nur in Anwesenheit einer weiteren Person unternehmen, die eine Wiederbelebung oder Erste-Hilfe-Maßnahmen leisten kann.
- Ersetzen Sie keine Teile oder ändern Sie die Geräte, um die Gefahr von zusätzlichen Schocks zu vermeiden. Geben Sie das Produkt zur Wartung und zur Reparatur zurück an das Agilent Technologies Sales and Service Office, um sicherzustellen, dass die Sicherheitsmerkmale erhalten bleiben.
- Arbeiten Sie nicht mit beschädigten Geräten, da die Sicherheitsschutzmerkmale, die in das Produkt implementiert sind, möglicherweise beeinträchtigt werden, entweder durch physikalische Beschädigung, durch überhöhte Feuchtigkeit oder durch andere Gründe. Entfernen Sie den Strom und verwenden Sie das Produkt nicht, bis der Sicherheitsbetrieb durch geschulte Servicemitarbeiter überprüft werden kann. Geben Sie das Produkt ggf. zur Wartung und zur Reparatur zurück an das Agilent Technologies Sales and Service Office, um sicherzustellen, dass die Sicherheitsmerkmale erhalten bleiben.

Umgebungsbedingungen

Dieses Instrument ist für den Gebrauch in Innenräumen und Bereichen mit geringer Kondensation konstruiert. Die nachstehende Tabelle enthält die allgemeinen Anforderungen an die Umgebungsbedingungen für dieses Gerät.

Umgebungsbedingungen	Anforderungen
Betriebstemperatur	Volle Genauigkeit von –20 °C bis 55 °C
Betriebsluftfeuchtigkeit	Volle Genauigkeit bei bis zu 80% RH (relative Luftfeuchtigkeit) für Temperaturen bis 35°C, linear abnehmend bis 50% RH bei 55°C
Lagerungstemperatur	-40 °C bis 70 °C (ohne Batterie)
Höhe	Bis zu 2.000 m
Verschmutzungsgrad	Verschmutzungsgrad 2

HINWEIS

Die U1253B True RMS OLED-Multimeter entspricht den folgenden Sicherheits- und EMC-Anforderungen.

- IEC 61010-1:2001/EN61010-1:2001 (2. Ausgabe)
- Kanada: CAN/CSA-C22.2 No. 61010-1-04
- USA: ANSI/UL 61010-1:2004
- IEC61326-1:2005 / EN61326-1:2006
- Kanada: ICES/NMB-001:2004
- Australien/Neuseeland: AS/NZS CISPR11:2004

Aufsichtsrechtliche Kennzeichnungen

CE ISM 1-A	Das CE-Zeichen ist eine registrierte Marke der Europäischen Gemeinschaft. Das CE-Zeichen gibt an, dass das Produkt allen relevanten europäischen rechtlichen Richtlinien entspricht.	C N10149	Das C-Tick-Zeichen ist eine registrierte Marke der Spectrum Management Agency of Australia. Dies kennzeichnet die Einhaltung der australischen EMC-Rahmenrichtlinien gemäß den Bestimmungen des Radio Communication Act von 1992.
ICES/NMB-001	ICES/NMB-001gibt an, dass dieses ISM-Gerät der kanadischen Norm ICES-001 entspricht. Cet appareil ISM est confomre a la norme NMB-001 du Canada.		Dieses Gerät entspricht der Kennzeichnungsanforderung gemäß WEEE-Richtlinie (2002/96/EC). Dieses angebrachte Produktetikett weist darauf hin, dass Sie dieses elektrische/elektronische Produkt nicht im Hausmüll entsorgen dürfen.
® Us	Das CSA-Zeichen ist eine eingetragene Marke der Canadian Standards Association.		

Europäische Richtlinie über Elektro- und Elektronik-Altgeräte (Waste Electrical and Electronic Equipment, WEEE) 2002/96/EC

Dieses Gerät entspricht der Kennzeichnungsanforderung gemäß WEEE-Richtlinie (2002/96/EC). Dieses angebrachte Produktetikett weist darauf hin, dass Sie dieses elektrische/elektronische Produkt nicht im Hausmüll entsorgen dürfen.

Produktkategorie:

Im Bezug auf die Ausrüstungstypen in der WEEE-Richtlinie Zusatz 1, gilt dieses Instrument als "Überwachungs- und Kontrollinstrument".

Das angebrachte Produktetikett ist unten abgebildet.

Entsorgen Sie dieses Gerät nicht im Hausmüll

Zur Entsorgung dieses Instruments wenden Sie sich an die nächste Agilent Technologies Geschäftsstelle oder besuchen Sie:

www.agilent.com/environment/product

Dort erhalten Sie weitere Informationen.

In diesem Handbuch...

1 Erste Schritte

Dieses Kapitel enthält Informationen zu Bedienfeld, Drehregler, Tastenfeld, Anzeige, Anschlüssen und hinterem Bedienfeld des U1253B True RMS OLED-Multimeters.

2 Messungen vornehmen

Dieses Kapitel enthält Informationen dazu, wie mit dem U1253B True RMS OLED-Multimeter Messungen durchgeführt werden.

3 Merkmale und Funktionen

Dieses Kapitel enthält Informationen zu den verfügbaren Funktionen für das U1253B True RMS OLED-Multimeter.

4 Ändern der Standardwerkseinstellung

In diesem Kapitel wird erklärt, wie die Standardwerkseinstellungen des U1253B True RMS OLED-Multimeters geändert sowie weitere verfügbare Einstellungen vorgenommen werden.

5 Wartung

In diesem Kapitel erfahren Sie, wie eventuell auftretende Fehlfunktionen des U1253B True RMS OLED-Multimeters behoben werden.

6 Leistungstests und Kalibrierung

In diesem Kapitel werden Leistungstest- und Einstellungsverfahren beschrieben.

7 Spezifikationen

Dieses Kapitel führt die Produkteigenschaften, Spezifikationsvoraussetzungen und die Spezifikationen für das U1253B True RMS OLED-Multimeter auf.

Konformitätserklärung (KE)

Die Konformitätserklärung (KE) für dieses Gerät ist auf der Website verfügbar. Unter Eingabe des Produktmodells oder der Beschreibung können Sie nach der KE suchen.

http://regulations.corporate.agilent.com/DoC/search.htm

Falls Sie die entsprechende KE nicht finden können, wenden Sie sich bitte an den lokalen Agilent-Vertreter.

Inhalt

1

2

Frequenzzähler

Testen von Dioden

38

Messwiderstand, Leitfähigkeit und Testdurchgang

47

Erste Schritte 2 Einführung zum Agilent U1253B True RMS OLED-Multimeter Überprüfen der Lieferung Einstellen des Neigungsständers Das vordere Bedienfeld auf einen Blick 8 Das hintere Bedienfeld auf einen Blick Der Drehregler auf einen Blick 10 Das Tastenfeld auf einen Blick 11 Die Anzeige auf einen Blick 14 Auswählen der Anzeige mit der Shift-Taste 20 Auswählen der Anzeige mit der Dual-Taste 21 Auswählen der Anzeige mit der Hz-Taste 25 Die Anschlüsse auf einen Blick 27 Messungen vornehmen Grundlegendes zu den Messanweisungen 30 30 Messen der Spannung Messen der AC-Spannung 31 32 Messen der DC-Spannung Messen der Stromstärke 33 µA- und mA-Messung 33 Prozentuale Skalierung von 4 mA bis 20 mA 35 A-Messung (Ampere) 37

40

	Messen der Kapazität 50
	Messen der Temperatur 52
	Warnmeldungen und Warnungen während der Messung Überspannungswarnung 56 Eingangswarnung 57 Ladeanschlusswarnung 58
3	Merkmale und Funktionen
	Dynamische Aufzeichnung 60
	Halten von Daten (Halten mit Auslöser) 62
	Halten aktualisieren 64
	Null (Relativ) 66
	Dezibelanzeige 68
	1-ms-Spitzenwert-Haltemodus 71
	Datenprotokollierung 73 Manuelle Protokollierung 73 Intervallprotokollierung 75 Überprüfen der protokollierten Daten 77
	Rechteckwellenausgabe 79
	Remotekommunikation 83
4	Ändern der Standardwerkseinstellung
	Auswahl des Einrichtungsmodus 86
	Standardwerkseinstellungen und verfügbare Einstellugsoptionen 87 Einstellen von Datenhaltemodus/Modus "Halten aktualisieren" 91 Einstellen des Datenprotokollierungsmodus 92 Einrichten der dB-Messung 94

Einstellen der Referenzimpedanz für dBm-Messung 95
Einstellen von Thermoelementtypen 96
Einstellen der Temperatureinheit 96
Einstellen der Prozentskalenausgabe 98
Einstellen des Signaltons für den Durchgangstest 99
Einstellen der Mindestmessfrequenz 100
Einstellen der Signaltonfrequenz 101
Einstellen des automatischen Abschaltmodus 102
Einstellen der Helligkeitsstärke der Hintergrundbeleuchtung bei Einschalten 104
Einstellen der Einschaltmelodie 105
Einstellen des Begrüßungsbildschirms beim Einschalten 105
Einstellen der Baudrate 106
Einstellen von Datenbits 107
Einstellen der Paritätsprüfung 108
Einstellen des Echomodus 109
Einstellen des Druckmodus 110
Version 111
Seriennummer 111
Spannungswarnung 112
M-initial 113
Aktualisierungsgeschwindigkeit der Glättung 117
Rücksetzen auf die Standardwerkseinstellungen 118
Einstellen des Batterietyps 119
Einstellen des DC-Filters 120
Wartung
Einleitung 122
Allgemeine Wartung 122
Batterieaustausch 123
Hinweise zur Lagerung 125
Laden des Akkus 126
Sicherungsprüfverfahren 133

5

	Austausch von Sicherungen 135 Fehlerbehebung 137
	Ersatzteile 139
	So bestellen Sie Ersatzteile 139
6	Leistungstests und Kalibrierung
	Kalibrierungsübersicht 142
	Elektronische Kalibrierung bei geschlossenem Gehäuse 142
	Agilent Technologies Kalibrierungsservice 142
	Kalibrierungsintervall 143
	Weitere Empfehlungen für die Kalibrierung 143
	Empfohlene Testausrüstung 144
	Basisbetriebstests 145
	Testen der Anzeige 145
	Stromanschlusstest 146
	Ladeanschluss-Alarmtest 147
	Überlegungen zum Test 148
	Leistungsüberprüfungstests 149
	Kalibrierungssicherheit 156
	Entsichern des Instruments zur Kalibrierung 156
	Ändern des Kalibrierungssicherheitscodes 159
	Zurücksetzen des Sicherheitscodes auf den
	Werksstandard 161
	Überlegungen zu Einstellungen 163
	Gültige Einstellungseingabewerte 164
	Kalibrierung über das vordere Bedienfeld 168
	Kalibrierungsprozess 168
	Kalibrierungsverfahren 169
	Kalibrierungszähler 176
	Kalibrierungsfehlercodes 177

7 Spezifikationen

Produkteigenschaften 180
Messkategorie 182
Messkategoriedefinition 182
Spezifikationsbedingungen 183
Elektrische Spezifikationen 184
DC-Spezifikationen 184
AC-Spezifikationen 188
AC- und DC-Spezifikationen 190
Kapazitätsspezifikationen 192
Temperaturspezifikationen 193
Kapazitätsspezifikationen 194
Arbeitszyklus- und Impulsbreitenspezifikationen 194
Spezifikationen für Frequenzempfindlichkeit 195
Spezifikationen für Spitzenwerthalten 196
Frequenzzählerspezifikationen 197
Rechteckwellenausgabe 198
Betriebsspezifikationen 199
Anzeigen der Aktualisierungsrate (ungefähr) 199
Eingangsimpedanz 200

Liste der Abbildungen

Abbildung 1-1	Ständer für eine Neigung von 60° 5
Abbildung 1-2	Ständer für eine Neigung von 30° 6
Abbildung 1-3	Ständer für die Aufhängung 7
Abbildung 1-4	Vorderes Bedienfeld des U1253B 8
Abbildung 1-5	Hinteres Bedienfeld 9
Abbildung 1-6	Drehregler 10
Abbildung 1-7	U1253B Tastenfeld 11
Abbildung 1-8	Anschlüsse 27
Abbildung 2-1	Messen der AC-Spannung 31
Abbildung 2-2	Messen der DC-Spannung 32
Abbildung 2-3	Messen von μ A- und mA-Stromstärke 34
Abbildung 2-4	Messskala von 4 mA bis 20 mA 36
Abbildung 2-5	A-Stomstärkenmessung (Ampere) 37
Abbildung 2-6	Messungsfrequenz 39
Abbildung 2-7	Art der Anzeige, wenn Smart W aktiviert ist 41
Abbildung 2-8	Messungswiderstand 42
Abbildung 2-9	Widerstands-, akustische Durchgangs- und
	Leitfähigkeitstests 43
Abbildung 2-10	Kurzschluss-Durchgang- und
	Offener-Durchgang-Test 45
Abbildung 2-11	Leitfähigkeitsmessung 46
Abbildung 2-12	Messen der Vorwärtsspannung einer Diode 48
Abbildung 2-13	Messen der Sperrvorspannung einer Diode 49
Abbildung 2-14	Kapazitätsmessungen 51
Abbildung 2-15	Anschließen der Wärmesonde am Übertragungs-
	adapter ohne Ausgleich 53
Abbildung 2-16	Anschließen der Sonde mit Adapter am
	Multimeter 53
Abbildung 2-17	Oberflächentemperaturmessung 55
Abbildung 2-18	Eingangsanschlusswarnung 57
Abbildung 2-19	Ladeanschlusswarnung 58
Abbildung 3-1	Dynamische Aufzeichnung 61
Abbildung 3-2	Datenhaltemodus 63
Abbildung 3-3	Modus "Halten aktualisieren" 65
Abbildung 3-4	Null (relative) 67
Abbildung 3-5	dBm-Anzeigemodus 69

Abbildung 3-6	dBV-Anzeigemodus 70
Abbildung 3-7	1-ms-Spitzenwert-Haltemodus 72
Abbildung 3-8	Manuelle Protokollierung 74
Abbildung 3-9	Volles Protokoll 74
Abbildung 3-10	Intervallprotokollierungsmodus (TIME) 76
Abbildung 3-11	Protokollansichtsmodus 78
Abbildung 3-12	Frequenzanpassung für
	Rechteckwellenausgabe 80
Abbildung 3-13	Arbeitszyklusanpassung für
	Rechteckwellenausgabe 81
Abbildung 3-14	Impulsbreitenanpassung für
	Rechteckwellenausgabe 82
Abbildung 3-15	Kabelverbindung für die
	Remotekommunikation 83
Abbildung 4-1	Anzeigen im Einrichtungsmenü 90
Abbildung 4-2	Datenhaltemodus/Modus "Halten
	aktualisieren" 91
Abbildung 4-3	Einrichten der Datenprotokollierung 92
Abbildung 4-4	Einstellen der Protokollierdauer bei der Intervallpro-
	tokollierung (TIME) 93
Abbildung 4-5	Einrichten der Dezibelmessung 94
Abbildung 4-6	Einstellen der Impedanz für die dBm-Einheit 95
Abbildung 4-7	Einrichten des Thermoelementtyps 96
Abbildung 4-8	Einrichten der Temperatureinheit 97
Abbildung 4-9	Einstellen der Prozentskalenausgabe 98
Abbildung 4-10	Auswählen des Signaltons für den
	Durchgangstest 99
Abbildung 4-11	Einrichten der Mindestfrequenz 100
Abbildung 4-12	Einrichten der Signaltonfrequenz 101
Abbildung 4-13	Einrichten des automatischen
	Energiesparmodus 103
Abbildung 4-14	Einstellen der Hintergrundbeleuchtung beim
	Einschalten 104
Abbildung 4-15	Einstellen der Melodie beim Einschalten 105
Abbildung 4-16	Einstellen der Begrüßung beim Einschalten 105
Abbildung 4-17	Einstellen der Baudrate für die
	Fernsteuerung 106

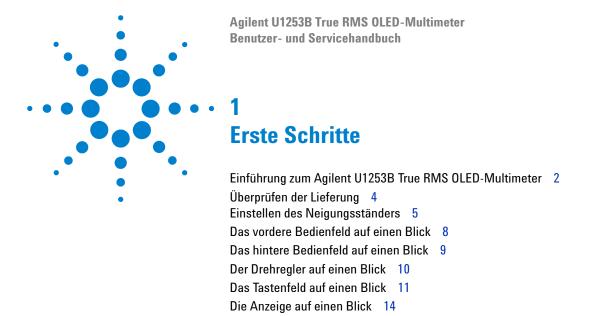

Abbildung 4-18	Einrichten des Datenbits für die
Abbild	Fernsteuerung 107
Abbildung 4-19	Einstellen der Paritätsprüfung für die
A h h : 1 d	Fernsteuerung 108
Abbildung 4-20	Einstellen des Echomodus für die
A I. I. I. I	Fernsteuerung 109
Abbildung 4-21	Einstellen des Druckmodus für die
Abbildung 4.22	Fernsteuerung 110 Versionsnummer 111
Abbildung 4-22	Seriennummer 111
Abbildung 4-23	
Abbildung 4-24	Einstellen der Spannungswarnmeldung 112
Abbildung 4-25	Einstellen der Anfangsmessfunktionen 114
Abbildung 4-26	Navigieren zwischen den
A I. I. I. I	Anfangsfunktionsseiten 115
Abbildung 4-27	Bearbeiten von
A11:11 4.00	Anfangsmessfunktion/-bereich 115
Abbildung 4-28	Bearbeiten von Anfangsmessfunktion/-bereich
A11:11 4.00	und Anfangsausgabewerten 116
Abbildung 4-29	Aktualisierungsgeschwindigkeit für Messwerte
	der Primäranzeige 117
Abbildung 4-30	Zurücksetzen auf
	Standardwerkseinstellungen 118
Abbildung 4-31	Batterietypauswahl 119
Abbildung 4-32	DC-Filter 120
Abbildung 5-1	Rechteckige Batterie mit 9 V 123
Abbildung 5-2	Hinteres Bedienfeld von Agilent U1253B True RMS
	OLED-Multimeter 124
Abbildung 5-3	Zeitanzeige beim Selbsttest 128
Abbildung 5-4	Durchführen des Selbsttests 129
Abbildung 5-5	Lademodus 130
Abbildung 5-6	Vollständig geladen und im
	Erhaltungszustand 131
Abbildung 5-7	Batterieladeverfahren 132
Abbildung 5-8	Sicherungsprüfverfahren 133
Abbildung 5-9	Austausch von Sicherung 136
Abbildung 6-1	Anzeigen aller OLED-Pixel 145
Abbildung 6-2	Stromanschluss-Fehlermeldung 146
Abbildung 6-3	Ladeanschluss-Fehlermeldung 147

Abbildung 6-4	Entsichern des Instruments zur Kalibrierung	158
Abbildung 6-5	Ändern des Kalibrierungssicherheitscodes	160
Abbildung 6-6	Zurücksetzen des Sicherheitscodes auf den	
	Werksstandard 162	
Abbildung 6-7	Typischer Kalibrierungsprozessverlauf 171	

Liste der Tabellen

Tabelle 1-1	Drehregler – Beschreibung und Funktionen 10
Tabelle 1-2	Tastenfeldbeschreibungen und -funktionen 12
Tabelle 1-3	Allgemeine Anzeigesymbole 14
Tabelle 1-4	Symbole der Primäranzeige 15
Tabelle 1-5	Symbole der Sekundäranzeige 17
Tabelle 1-6	Bereich und Zahlen des analogen
	Balkendiagramms 19
Tabelle 1-7	Auswählen der Anzeige mit der Shift-Taste 20
Tabelle 1-8	Auswählen der Anzeige mit der Dual-Taste 21
Tabelle 1-9	Auswählen der Anzeige mit der Hz-Taste 25
Tabelle 1-10	Anschlüsse für verschiedene Messfunktionen 28
Tabelle 2-1	Beschreibungen der nummerierten Schritte 30
Tabelle 2-2	Prozentuale Skalierung und Messbereich 35
Tabelle 2-3	Akustische Durchgangstestmessung 44
Tabelle 3-1	Verfügbare Frequenzen für
	Rechteckwellenausgabe 79
Tabelle 4-1	Standardwerkseinstellungen und verfügbare Einstel-
	lungsoptionen für jede Funkiton 87
Tabelle 4-2	Verfügbare Einstellungen für M-initial 113
Tabelle 5-1	Batteriespannung und entsprechende Prozentangabe
	des Ladevorgangs im Standby- und
	Auflademodus. 128
Tabelle 5-2	Fehlermeldungen 129
Tabelle 5-3	U1253B Messwertanzeige für
	Sicherungsprüfung 134
Tabelle 5-4	Sicherungsspezifikationen 136
Tabelle 5-5	Grundlegende Problembehebungsfunktionen 138
Tabelle 6-1	Empfohlene Testausrüstung 144
Tabelle 6-2	Leistungsüberprüfungstests 150
Tabelle 6-3	Gültige Einstellungseingabewerte 164
Tabelle 6-4	Liste der Kalibrierungselemente 172
Tabelle 6-5	Kalibrierungsfehlercodes und ihre jeweilige
	Bedeutung 177
Tabelle 7-1	DC-Genauigkeit ± (% des Messwerts + Nr. der nieder
	wertigsten Ziffer) 184

Tabelle 7-2	Genauigkeitsspezifikationen ± (% des Messwerts + Nr. der niederwertigsten Ziffer) für True RMS
	AC-Spannung 188
Tabelle 7-3	Genauigkeitsspezifikationen ± (% des Messwerts + Nr. der niederwertigsten Ziffer) für True RMS
	AC-Strom 189
Tabelle 7-4	Genauigkeitsspezifikationen \pm (% des Messwerts + Nr.
	der niederwertigsten Ziffer) für AC- und
	DC-Spannung 190
Tabelle 7-5	Accuracy specifications \pm (% of reading + number of
	LSD) for AC+DC current 191
Tabelle 7-6	Kapazitätsspezifikationen 192
Tabelle 7-7	Temperaturspezifikationen 193
Tabelle 7-8	Kapazitätsspezifikationen 194
Tabelle 7-9	Arbeitszyklus- und Impulsbreitenspezifikationen 194
Tabelle 7-10	Frequenzempfindlichkeits- und Triggerpegelspezifika
	tionen für Spannungsmessungen 195
Tabelle 7-11	Frequenzempfindlichkeitsspezifikationen für
	Stromstärkemessungen 196
Tabelle 7-12	Spitzenwerthalten-Spezifikationen für DC-Spannung-
	und Stromstärkemessungen 196
Tabelle 7-13	Frequenzzählerspezifikationen (Dividieren
	durch 1) 197
Tabelle 7-14	Frequenzzählerspezifikationen (Dividieren durch
	100 [4]) 197
Tabelle 7-15	Spezifikationen für Rechteckwellenausgabe 198
Tabelle 7-16	
Tabelle 7-17	Eingangsimpedanz 200

Dieses Kapitel enthält Informationen zu Bedienfeld, Drehregler, Tastenfeld, Anzeige, Anschlüssen und hinterem Bedienfeld des U1253B True RMS OLED-Multimeters.

Auswählen der Anzeige mit der Shift-Taste 20 Auswählen der Anzeige mit der Dual-Taste 21 Auswählen der Anzeige mit der Hz-Taste 25

Die Anschlüsse auf einen Blick 27

Einführung zum Agilent U1253B True RMS OLED-Multimeter

Die wesentlichen Merkmale des True RMS OLED-Multimeter sind:

- DC-, AC- und AC+DC-Spannungs- und -Stromstärkenmessungen
- True-RMS-Messung für AC-Spannung und -Stromstärke
- Aufladbare Ni-MH-Batterie mit integrierter Ladefunktion
- Umgebungstemperaturausgabe, die mit den meisten Messausgaben einhergeht (in der Einzel- und Kombinationsanzeige)
- Batteriekapazitätsanzeige
- Hellgelbe OLED-Anzeige (Organic Light Emitting Diode)
- Widerstandsmessung bis zu $500 \text{ M}\Omega$
- Leitfähigkeitsmessung von $0.01 \text{ nS} (100 \text{ G}\Omega)$ bis 500 nS
- Kapazitätsmessung bis zu 100 mF
- Frequenzzähler bis zu 20 MHz
- Prozentuale Skalenausgabe für 4-20 mA- oder 0-20 mA-Messung
- Messung von dBm mit w\u00e4hlbarer Referenzimpedanz
- 1-ms-Spitzenwert-Haltemodus zum mühelosen Erfassen von Einschaltspannung und -strom
- Temperaturtest mit wählbarem 0 °C-Ausgleich (ohne Ausgleich der Umgebungstemperatur)
- J-Typ- oder K-Typ-Sonde für Temperaturmessung
- Frequenz-, Arbeitszyklus- und Impulsbreitemessungen
- Dynamische Aufzeichnung für Minimal-, Maximal-, Durchschnitts- und aktuelle Messwerte
- Datenhalten mit manuellem oder automatischem Auslöser und entsprechenden Modi
- Dioden- und akustische Durchgangstests
- Rechteckwellengenerator Frequenz, Impulsbreite und Arbeitszyklus wählbar

- Agilent GUI-Anwendungssoftware (IR-USB-Kabel separat erhältlich)
- Kalibrierung bei geschlossenem Gehäuse
- Digitales 50.000-Zahlen-Präzisions-True-RMS-Multimeter, gemäß EN/IEC 61010-1:2001 Kategorie III 1.000 V Überspannungsschutz, Verschmutzungsgrad 2.

Überprüfen der Lieferung

Überprüfen Sie, ob Sie das folgende Zubehör mit Ihrem Multimeter erhalten haben:

- 4-mm-Sonden
- Testleitungen
- · Abgreifklemmen
- Ladbarer Akku 7,2 V
- Stromkabel und Wechselstromadapter
- Kurzanleitung
- Zertifikat für die Kalibrierung

Wenden Sie sich an ein Agilent Vertriebsbüro in Ihrer Nähe, falls Komponenten in der Lieferung fehlen sollten.

Überprüfen Sie die Transportverpackung auf Schäden. Zeichen einer Beschädigung können eine verbeulte oder zerrissene Transportverpackung oder eine unnormale Verdichtung oder Risse im Polstermaterial sein. Bewahren Sie das Verpackungsmaterial für den Fall auf, dass das Multimeter zurückgesandt werden muss.

Eine vollständige, aktuelle Liste des erhältlichen Zubehörs für das Handmultimeter finden Sie in der Broschüre Agilent Handheld Tools (5989-7340EN).

Einstellen des Neigungsständers

Um das Multimeter in der Position von 60° aufzustellen, ziehen Sie den Neigungsständer maximal aus.

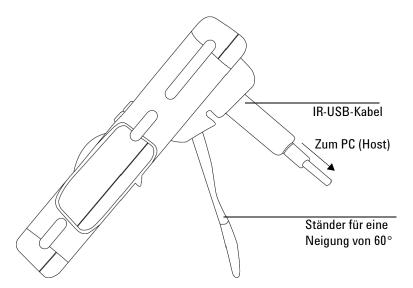


Abbildung 1-1 Ständer für eine Neigung von 60°

1 Erste Schritte

Um das Multimeter in einer Position von 30° aufzustellen, biegen Sie die Spitze des Ständers so, dass sie parallel zum Boden ist, und ziehen Sie anschließend den Ständer maximal aus.

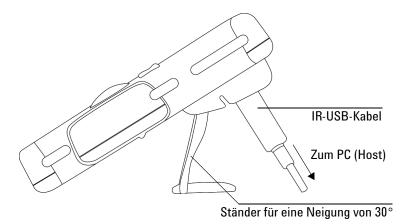


Abbildung 1-2 Ständer für eine Neigung von 30°

Um das Multimeter aufzuhängen, führen Sie die folgenden Schritte aus bzw. beachten Sie die Informationen in Abbildung 1-3 auf Seite 7:

- 1 Drücken Sie den Ständer aufwärts und über die maximale Position hinaus, bis er sich aus seinem Scharnier löst.
- **2** Drehen Sie den ausgehängten Ständer anschließend um, sodass die Innenseite nicht zu Ihnen, sondern zum Multimeter zeigt.
- **3** Drücken Sie den Ständer jetzt in aufrechter Position in das Scharnier.

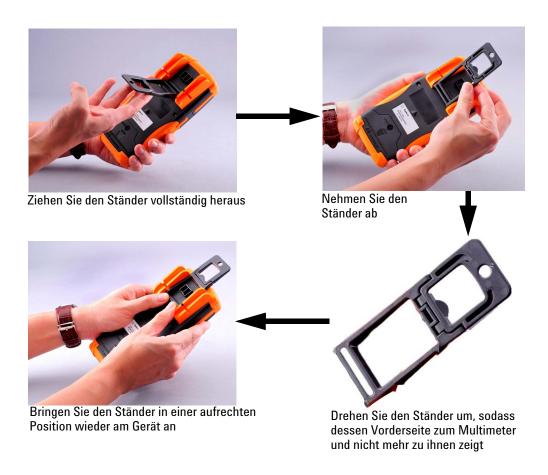


Abbildung 1-3 Ständer für die Aufhängung

1

Das vordere Bedienfeld auf einen Blick

Abbildung 1-4 Vorderes Bedienfeld des U1253B

Das hintere Bedienfeld auf einen Blick

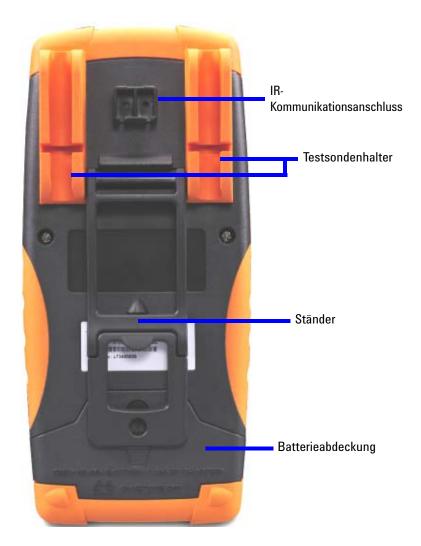


Abbildung 1-5 Hinteres Bedienfeld

Der Drehregler auf einen Blick

Abbildung 1-6 Drehregler

Tabelle 1-1 Drehregler – Beschreibung und Funktionen

Nr.	Beschreibung/Funktion
1	Lademodus (CHG) oder Aus (OFF)
2	AC V
3	DC V, AC V oder AC+DC V
4	DC mV, AC mV oder AC+DC mV
5	Widerstand (Ω), Durchgang und Leitfähigkeit (nS)
6	Frequenzzähler oder Diode
7	Kapazität oder Temperatur
8	DC μA, AC μA oder AC+DC μA
9	DC mA, DC A, AC mA, AC A, AC+DC mA oder AC+DC A
10	Rechteckwellenausgabe, Arbeitszyklus oder Impulsbreitenausgabe

Das Tastenfeld auf einen Blick

Die Funktion jeder Taste ist nachstehend in Tabelle 1-2 dargestellt. Bei Drücken einer Taste wird ein entsprechendes Symbol angezeigt und ein Signalton ausgegeben. Bei Drehen des Drehreglers in eine andere Position wird die aktuelle Funktion der Taste zurückgesetzt. Abbildung 1-7 zeigt das Tastenfeld von U1253B.

Abbildung 1-7 U1253B Tastenfeld

1 Erste Schritte

Tabelle 1-2 Tastenfeldbeschreibungen und -funktionen

	Taste	Funktion bei Tastendruck von weniger als 1 Sekunde	Funktion bei Tastendruck von mehr als 1 Sekunde
1		wechselt zwischen den Helligkeitsstärken der OLED-Anzeige.	 aktiviert den Protokollanzeigemodus. Drücken Sie auf , um zwischen manuellen oder Intervallprotokolldaten zu wechseln. Drücken Sie auf , oder , um die zuerst bzw. zuletzt protokollierten Daten anzuzeigen. Drücken Sie auf , oder , um durch die protokollierten Daten zu navigieren. Drücken Sie länger als 1 Sekunde auf , um diesen Modus zu beenden.
2	Hold	Hold hält den aktuell gemessenen Wert. Drücken Sie im Datenhaltemodus (T	Tuft den dynamischen Aufzeichnungsmodus auf. Drücken Sie erneut auf (Hold), um zwischen den Minimal-, Maximal-, Durchschnitts- und aktuellen Messwerten zu wechseln (angezeigt durch (HOM)). Tiel MIN, (HOM) AVG oder (HOM). Drücken Sie länger als 1 Sekunde auf (HOM), um diesen Modus zu beenden.
3	ΔNull	Speichert den angezeigten Wert als Referenzwert, der von den nachfolgenden Messungen abgezogen wird. Drücken Sie im Nullmodus auf (ANGIL), um den relativen Wert (O'BASE), der gespeichert wurde, anzuzeigen. Der gespeicherte relative Wert wird 3 Sekunden lang angezeigt. Drücken Sie auf (ANGIL) während der relative Wert (O'BASE) angezeigt wird, um die Nullfunktion zu beenden.	Tuft den den 1-ms-Spitzenwert-Haltemodus aus. Drücken Sie auf [Fold], um zwischen den maximalen [Find] [F
4	Shift	wechselt zwischen der/den Messfunktion/en der aktuellen Drehreglerauswahl.	 ruft den Einrichtungsmodus auf. Drücken Sie im Einrichtungsmodus auf oder um zwischen Menüseiten zu wechseln. Drücken Sie auf oder um zwischen den verfügbaren Einstellungen zu wechseln. Drücken Sie auf um um einen angegebenen Wert zu bearbeiten. Drücken Sie erneut auf um um die neuen Einstellungen zu speichern und beenden Sie den Bearbeitungsmodus oder drücken Sie auf um den Modus ohne Speichern zu verlassen. Drücken Sie länger als 1 Sekunde auf um diesen Modus zu beenden.

Tabelle 1-2 Tastenfeldbeschreibungen und -funktionen (Fortsetzung)

	Taste	Funktion bei Tastendruck von weniger als 1 Sekunde	Funktion bei Tastendruck von mehr als 1 Sekunde
5	Range	(außer wenn der Drehregler sich in der Position oder Hz befindet) [2].	ruft den Modus zur automatischen Bereichsauswahl auf.
6	Dual	durchläuft verfügbare Kombinationsanzeigen (außer wenn der Drehregler sich in der Position ————————————————————————————————————	Dual beendet die Modi Halten, Null und dynamische Aufzeichnung sowie den 1-ms-Spitzenwert-Haltemodus und die Kombinationsanzeige.
7	Hz	 Hz aktiviert den Frequenztestmodus für Stromstärken- oder Spannungsmessungen. Drücken Sie auf Hz , um zwischen den Funktionen Frequenz (Hz), Impulsbreite (ms) und Arbeitszyklus (%) zu wechseln. Bei Arbeitszyklus- (%) und Impulsbreitetests (ms) drücken Sie auf Dual , um zwischen positivem und negativem Flankentrigger umzuschalten. Befindet sich der Drehregler in der Position Hz und die Frequenzzählerfunktion ist ausgewählt, wird durch Drücken auf zwischen den Frequenz-, Impulsbreiten- und Arbeitszyklusmessungen gewechselt. 	Nenn für die Datenprotokollierung

Hinweise zu den Beschreibungen und Funktionen des Tastenfelds:

- 1 Einzelheiten zu den verfügbaren Optionen finden Sie in Tabelle 4-1 auf Seite 87.
- 2 Befindet sich der Drehregler auf

 und die Temperaturmessfunktion ist ausgewählt, werden durch Drücken auf
 keine Einstellungen beeinträchtigt. Befindet sich der Drehregler auf

 und die Frequenzzählerfunktion ist ausgewählt, drücken Sie auf
 und die Frequenzzählerfunktion ist ausgewählt, drücken Sie auf
 und die Frequenzzählerfunktion ist ausgewählt, drücken Sie auf
 und die Frequenzzählerfunktion ist ausgewählt, drücken Sie auf
 und die Frequenzzählerfunktion ist ausgewählt, drücken Sie auf
 und die Frequenzzählerfunktion ist ausgewählt, drücken Sie auf
 und die Frequenzzählerfunktion ist ausgewählt, drücken Sie auf
 und die Frequenzzählerfunktion ist ausgewählt, drücken Sie auf
 und die Frequenzzählerfunktion ist ausgewählt, drücken Sie auf
 und die Frequenzzählerfunktion ist ausgewählt, drücken Sie auf
 und die Frequenzzählerfunktion ist ausgewählt, drücken Sie auf
 und die Frequenzzählerfunktion ist ausgewählt, drücken Sie auf
 und die Frequenzzählerfunktion ist ausgewählt, drücken Sie auf
 und die Frequenzzählerfunktion ist ausgewählt, drücken Sie auf
 und die Frequenzzählerfunktion ist ausgewählt, drücken Sie auf
 und die Frequenzzählerfunktion ist ausgewählt, drücken Sie auf
 und die Frequenzzählerfunktion ist ausgewählt, drücken Sie auf
 und die Frequenzzählerfunktion ist ausgewählt, drücken Sie auf
 und die Frequenzzählerfunktion ist ausgewählt.
- Befindet sich der Drehregler auf Hell und die Temperaturmessfunktion ist ausgewählt, ist ETC (Ausgleich der Umgebungstemperatur) standardmäßig aktiviert. Drücken Sie auf wird angezeigt. Für Impulsbreiten- und Arbeitszyklusmessungen drücken Sie auf wird aus wird angezeigt. Für Impulsbreiten- und Arbeitszyklusmessungen drücken Sie auf wird auf negativen Flankentrigger zu wechseln. Wenn das Multimeter sich im Spitzenwert- oder dynamischen Aufzeichnungsmodus befindet, drücken Sie auf wird auf neu zu starten.

Die Anzeige auf einen Blick

Die Anzeigesymbole werden in den folgenden Tabellen erläutert.

Tabelle 1-3 Allgemeine Anzeigesymbole

OLED-Meldeanzeige	Beschreibung
-53	Fernsteuerung
K, J	Thermoelementtyp: [:] (K-Typ); [] (J-Typ)
ANULL	Math. Null-Funktion
O'BASE	Relativer Wert für Nullmodus
- - -	Diode
(I)), d	Akustischer Durchgangstest: :: (SINGLE) oder :::: (TONE); abhängig von der Einrichtungskonfiguration
	Anzeigemodus zur Überprüfung protokollierter Daten
	Datenprotokollierungsanzeige
A: 1000, H: 100, A: Full, A: Void	Index für Datenprotokollierung
#L	Positive Neigung für Messung von Impulsbreite (ms) und Arbeitszyklus (%) Kondensator wird aufgeladen (während Kapazitätsmessung)
4.1	Negative Neigung für Messung von Impulsbreite (ms) und Arbeitszyklus (%) Kondensator wird entladen (während Kapazitätsmessung)
	Anzeige des Batteriestatus (wechselnd zwischen diesen beiden Symbolen)
HE	Automatische Abschaltfunktion aktiviert
F:-!!!!!	Halten aktualisieren (automatisch)

Tabelle 1-3 Allgemeine Anzeigesymbole (Fortsetzung)

OLED-Meldeanzeige	Beschreibung
T- <u>IIII</u> II	Halten Auslöser (manuell)
EENOM	Dynamischer Aufzeichnungsmodus: Aktueller Wert auf Primäranzeige
□ ■ MAX	Dynamischer Aufzeichnungsmodus: Maximaler Wert auf Primäranzeige
EEMIN	Dynamischer Aufzeichnungsmodus: Minimaler Wert auf Primäranzeige
EE AVG	Dynamischer Aufzeichnungsmodus: Durchschnittswert auf Primäranzeige
P-1111111+	1-ms-Spitzenwert-Haltemodus: Positiver Spitzenwert auf Primäranzeige
P-IIIII-	1-ms-Spitzenwert-Haltemodus: Negativer Spitzenwert auf Primäranzeige
*	Meldeanzeige bei gefährlicher Spannung beim Messen von Spannung ≥ 30 V oder Überspannung

Die Symbole der Primäranzeige werden nachstehend erläutert.

Tabelle 1-4 Symbole der Primäranzeige

OLED-Meldeanzeige	Beschreibung	
AUTO	Automatische Bereichsauswahl	
==	AC+DC	
	DC	
~	AC	
-123.45	Polarität, Ziffern und Dezimalpunkte für Primäranzeige	

1 Erste Schritte

 Tabelle 1-4
 Symbole der Primäranzeige (Fortsetzung)

OLED-Meldeanzeige	Beschreibung
dBm	Dezibeleinheit relativ zu 1 mW
dBV	Dezibeleinheit relativ zu 1 V
Hz.KHz. MHz	Frequenzeinheiten: Hz, kHz, MHz
O,KO,MO	Widerstandseinheiten: Ω , k Ω , M Ω
nS	Leitfähigkeitseinheit: nS
mU.U	Spannungseinheiten: mV, V
лд, тд, д	Stromstärkeeinheiten: μA, mA, A
nF, uF, mF	Kapazitätseinheiten: nF, μF, mF
°C	Celsius-Temperatureinheit
°F	Fahrenheit-Temperatureinheit
%	Arbeitszyklusmessung
ms.	Impulsbreiteeinheit
% 0-20	Prozentskalenausgabe basierend auf DC 0 mA bis 20 mA
% 4-20	Prozentskalenausgabe basierend auf DC 4 mA bis 20 mA

Tabelle 1-4 Symbole der Primäranzeige (Fortsetzung)

OLED-Meldeanzeige	Beschreibung
99995	Referenzimpedanz für dBm-Einheit
0 1 2 3 4 5V + AUTO 0 2 4 6 8 1000V + AUTO	Balkendiagrammskalierung

Die Meldeanzeigen der Sekundäranzeige sind nachstehend beschrieben.

Tabelle 1-5 Symbole der Sekundäranzeige

OLED-Meldeanzeige	Beschreibung
77	AC+DC
11 21 22	DC
75.7	AC
-123.45	Polarität, Ziffern und Dezimalpunkte für Sekundäranzeige
dBm	Dezibeleinheit relativ zu 1 mW
dBV	Dezibeleinheit relativ zu 1 V
Hz,kHz,MHz	Frequenzeinheiten: Hz, kHz, MHz
Ω, kΩ, ΜΩ	Widerstandseinheiten: Ω , k Ω , M Ω
mV, V	Spannungseinheiten: mV, V
NA, MA, A	Stromstärkeeinheiten: μA, mA, A
nS	Leitfähigkeitseinheit: nS
nF, µF, mF	Kapazitätseinheiten: nF, μF, mF

1 Erste Schritte

Tabelle 1-5 Symbole der Sekundäranzeige (Fortsetzung)

OLED-Meldeanzeige	Beschreibung
°C	Celsius-Umgebungstemperatureinheit
٥E	Fahrenheit-Umgebungstemperatureinheit
	Kein Ausgleich der Umgebungstemperatur, nur Thermoelementmessung
ms.	Impulsbreiteeinheit
E:AS	Vorspannungsanzeige
LEAK	Kriechstromanzeige
0000S	Einheit für verstrichene Zeit: s (Sekunde) für dynamische Aufzeichnung und 1-ms-Spitzenwert-Haltemodus
ş	Meldeanzeige bei gefährlicher Spannung beim Messen von Spannung >= 30 V oder Überspannung

Das analoge Balkendiagramm emuliert die Nadel auf einem analogen Multimeter, ohne die Überschwingweite anzuzeigen. Wenn Sie Spitzenwerte oder Nulleinstellungen messen und die Eingaben sich schnell ändern, ist die Balkendiagrammanzeige nützlich, da sie schneller aktualisiert wird.

Für Frequenz-, Arbeitszyklus-, Impulsbreiten-, 4 mA - 20 mA-Prozentskalierungs-, 0 mA - 20 mA Prozentskalierungs-, dBm-, dBV- und Temperaturmessungen gibt das Balkendiagramm nicht den Primäranzeigewert wieder.

- Wenn zum Beispiel die Frequenz, der Arbeitszyklus oder die Impulsbreite während einer Spannungs- oder Stromstärkenmessung auf der Primäranzeige angezeigt werden, gibt das Balkendiagramm den Spannungs- oder den Stromstärkenwert an (nicht die Frequenz, den Arbeitszyklus oder die Impulsbreite).
- Wird die 4 mA 20 mA-Prozentskalierung () oder die 0 mA 20 mA-Prozentskalierung () auf der Primäranzeige angezeigt, zeigt das Balkendiagramm den aktuellen und nicht den Prozentwert an.

Das "+" oder "-"-Zeichen wird angezeigt, wenn der positive oder negative Wert gemessen oder berechnet wurde. Jedes Segment stellt abhängig von dem auf der Balkendiagrammanzeige für den Spitzenwert angezeigten Bereich 2.000 oder 400 Zahlen dar. Siehe nachstehende Tabelle.

Tabelle 1-6 Bereich und Zahlen des analogen Balkendiagramms

Bereich	Zahlen/Segment	Verwendung für Funktion
0 1 2 3 4 5V +l	2.000	V, A, Ω, nS, Diode
0 2 4 6 8 1000V +lllll⊪ AUTO	400	V, A, Kapazität

Auswählen der Anzeige mit der Shift-Taste

Die nachstehende Tabelle zeigt die Auswahl der Primäranzeige mit Berücksichtigung der Messfunktion (Drehreglerposition) mittels der Shift-Taste.

Tabelle 1-7 Auswählen der Anzeige mit der Shift-Taste

Drehreglerposition (Funktion)	Primäranzeige
(AC-Spannung)	AC V
	dBm oder dBV (im Kombinationsanzeigemodus) ^{[1][2]}
	DC V
(AC+DC-Spannung)	AC V
, , ,	AC+DC V
	DC mV
(AC+DC-Spannung)	AC mV
, , ,	AC+DC mV
- C - ctl	Ω
n <mark>S ៧)</mark> Ω	Ω (Akustisch)
(Widerstand)	AC+DC mV
Hz -> -	Diode
(Diodentest und Frequenz)	Hz
[]	Kapazität
→ → ↓ (Kapazität und Temperatur)	Temperatur
_	DC μA
μΑ ~ (AC+DC-Stromstärke)	ΑС μΑ
(i = = = i i o i o i o i o i o i o i o i	AC+DC μA

Tabelle 1-7 Auswählen der Anzeige mit der Shift-Taste (Fortsetzung)

Drehreglerposition (Funktion)	Primäranzeige
	DC mA
mA·A 🚃	AC mA
(AC+DC-Stromstärke)	AC+DC mA
(Positive Sonde im μ A.mA -Anschluss)	% (0 mA - 20 mA oder 4 mA - 20 mA ^[1])
	(Messwerte in mA oder A werden auf der Sekundäranzeige angegeben)
mA·A 💳	DC A
(AC+DC-Stromstärke) (Negative Sonde im A -Anschluss)	AC A
	AC+DC A
ллл <mark>%</mark>	Arbeitszyklus (%)
OUT ms	Impulsbreite (ms)

Hinweise zur Auswahl der Anzeige mit der SHIFT-Taste:

- 1 Abhängig von der relevanten Einstellung im Einrichtungsmodus.
- 2 Halten Sie (Dual) länger als 1 Sekunde gedrückt, um zur AC V-Messung zurückzukehren.

Auswählen der Anzeige mit der Dual-Taste

- Drücken Sie auf Dual, um verschiedene Kombinationen der Kombinationsanzeige auszuwählen.
- Drücken und halten Sie Dual länger als 1 Sekunde, um zur normalen Einzelanzeige zurückzukehren.
- · Siehe nachstehende Tabelle.

 Tabelle 1-8
 Auswählen der Anzeige mit der Dual-Taste

Drehreglerposition (Funktion)	Primäranzeige	Sekundäranzeige
~v	AC V	Hz (AC-Kopplung)
(AC-Spannung)	dBm oder dBV ^[1]	AC V

1 Erste Schritte

 Tabelle 1-8
 Auswählen der Anzeige mit der Dual-Taste (Fortsetzung)

Drehreglerposition (Funktion)	Primäranzeige	Sekundäranzeige
(Standard ist DC-Spannung)	DC V	Hz (DC-Kopplung)
	dBm oder dBV ^[1]	DC V
	DC V	AC V
≂v	AC V	Hz (AC-Kopplung)
(Drücken Sie auf 💚 , um	dBm oder dBV ^[1]	AC V
AC-Spannung auszuwählen)	AC V	DC V
	AC+DC V	Hz (AC-Kopplung)
≂v	dBm oder dBV ^[1]	AC+DC V
(Drücken Sie zweimal auf , um AC+DC-Spannung auszuwählen)	AC+DC V	AC V
Act Do-opaintung auszuwanten)	AC+DC V	DC V
~ mV	DC mV	Hz (DC-Kopplung)
	dBm oder dBV ^[1]	DC mV
(Standard ist DC-Spannung)	DC mV	AC mV
~ mV	AC mV	Hz (AC-Kopplung)
(Drücken Sie auf 🗫, um	dBm oder dBV ^[1]	AC mV
AC-Spannung auszuwählen)	AC mV	DC mV
	AC+DC mV	Hz (AC-Kopplung)
~ mV	dBm oder dBV ^[1]	AC+DC mV
(Drücken Sie zweimal auf , um AC+DC-Spannung auszuwählen)	AC+DC mV	AC mV
70. 50-obailing anszawallicii)	AC+DC mV	DC mV
μ Α ~	DC μA	Hz (DC-Kopplung)
(Standard ist DC-Strom)	DC μA	ΑС μΑ

 Tabelle 1-8
 Auswählen der Anzeige mit der Dual-Taste (Fortsetzung)

Drehreglerposition (Funktion)	Primäranzeige	Sekundäranzeige
μ Α ~	ΑС μΑ	Hz (AC-Kopplung)
(Drücken Sie auf , um AC-Strom auszuwählen)	ΑС μΑ	DC μA
μ Α ~	AC+DC μA	Hz (AC-Kopplung)
	AC+DC μA	ΑС μΑ
(Drücken Sie zweimal auf 💓 , um AC+DC-Strom auszuwählen)	AC+DC μA	DC µA
mA·A 	DC mA	Hz (DC-Kopplung)
(Standard ist DC-Strom)	DC mA	AC mA
mA·A 	AC mA	Hz (AC-Kopplung)
(Drücken Sie auf 🍑 , um AC-Strom auszuwählen)	AC mA	DC mA
mA·A 💳	AC+DC mA	Hz (AC-Kopplung)
(Drücken Sie zweimal auf , um AC+DC-Strom auszuwählen)	AC+DC mA	AC mA
	AC+DC mA	DC mA
mA·A 	DC A	Hz (DC-Kopplung)
(Standard ist DC-Strom)	DC A	AC A
mA·A 💳	AC A	Hz (AC-Kopplung)
(Drücken Sie auf , um AC-Strom auszuwählen)	AC A	DC A
mA·A 💳	AC+DC A	Hz (AC-Kopplung)
(Drücken Sie zweimal auf 💚 , um	AC+DC A	AC A
AC+DC-Strom auszuwählen)	AC+DC A	DC A

1 Erste Schritte

 Tabelle 1-8
 Auswählen der Anzeige mit der Dual-Taste (Fortsetzung)

Drehreglerposition (Funktion)	Primäranzeige	Sekundäranzeige
	nF / V / nS	Keine Sekundäranzeige. Umgebungstemperatur wird in °C oder °F in der oberen rechten Ecke angezeigt.
$oldsymbol{\Omega}$ (Widerstand)	Ω	DC-mV-Vorspannung, DC-A-Kriechstrom Umgebungstemperatur wird in °C oder °F in der oberen rechten Ecke angezeigt.
(Temperatur)	°C (°F)	Wenn die °C/°F- oder °F/°C-Kombinationsanzeige im Einrichtungsmodus ausgewählt ist, wird auf der Sekundäranzeige die Temperatur in der anderen Einheit (gegensätzlich zur Primäranzeige) wiedergegeben. Wenn die Einzeleinheitanzeige im Einrichtungsmodus ausgewählt ist, steht keine Sekundäranzeige zur Verfügung. Umgebungstemperatur wird in °C oder °F in der oberen rechten Ecke angezeigt. Wählen Sie 0 °C-Ausgleich, indem Sie auf

Hinweise zur Auswahl der Anzeige mit der DUAL-Taste:

¹ Abhängig von der relevanten Einstellung im Einrichtungsmodus.

Auswählen der Anzeige mit der Hz-Taste

Die Frequenzmessfunktion unterstützt das Erkennen harmonischer Ströme in neutralen Leitern und bestimmt, ob diese neutralen Ströme das Resultat unsymmetrischer Phasen oder nicht-linearer Lasten sind.

- Drücken Sie auf (Hz), um zum Frequenzmessungsmodus für Stromstärken- und Spannungsmessungen zu gelangen Spannung oder Stromstärke auf der Sekundäranzeige und Frequenz auf der Primäranzeige.
- Alternativ kann die Impulsbreite (ms) oder der Arbeitszyklus (%) auf der Primäranzeige durch erneutes Drücken auf (hz) angezeigt werden. Dies ermöglicht simultane Überwachung von Spannung oder Stromstärke in Echtzeit mit Frequenz, Arbeitszyklus oder Impulsbreite.
- Halten Sie Dual länger als 1 Sekunde gedrückt, um Spannungs- oder Strommesswerte auf der Primäranzeige anzuzeigen.

Tabelle 1-9 Auswählen der Anzeige mit der Hz-Taste

Drehreglerposition (Funktion)	Primäranzeige	Sekundäranzeige	
~ v	Frequenz (Hz)		
∼v ≂v	Impulsbreite (ms)	AC V	
(Für V drücken Sie auf) , um AC-Spannung auszuwählen)	Arbeitszyklus (%)	7,61	
	Frequenz (Hz)		
(Standard ist DC-Spannung)	Impulsbreite (ms)	DC V	
	Arbeitszyklus (%)		
(Drücken Sie zweimal auf), um AC+DC-Spannung auszuwählen)	Frequenz (Hz)		
	Impulsbreite (ms)	AC+DC V	
	Arbeitszyklus (%)		

1 Erste Schritte

Tabelle 1-9 Auswählen der Anzeige mit der Hz-Taste (Fortsetzung)

Drehreglerposition (Funktion)	Primäranzeige	Sekundäranzeige	
	Frequenz (Hz)		
∼ mV	Impulsbreite (ms)	DC mV	
(Standard ist DC-Spannung)	Arbeitszyklus (%)		
~ mV	Frequenz (Hz)		
(Drücken Sie auf 💗 , um AC-Spannung	Impulsbreite (ms)	AC mV	
auszuwählen)	Arbeitszyklus (%)		
~ mV	Frequenz (Hz)		
(Drücken Sie zweimal auf 💚 , um	Impulsbreite (ms)	AC+DC mV	
AC+DC-Spannung auszuwählen)	Arbeitszyklus (%)		
A —	Frequenz (Hz)		
μΑ ~	Impulsbreite (ms)	DC μA	
(Standard ist DC-Strom)	Arbeitszyklus (%)		
μ Α ~	Frequenz (Hz)		
•	Impulsbreite (ms)	ΑС μΑ	
(Drücken Sie auf 💎, um AC-Strom auszuwählen)	Arbeitszyklus (%)		
μ Α ~	Frequenz (Hz)		
·	Impulsbreite (ms)	AC+DC μA	
(Drücken Sie zweimal auf 👽 , um AC+DC-Strom auszuwählen)	Arbeitszyklus (%)		
	Frequenz (Hz)		
mA·A 	Impulsbreite (ms)	DC mA oder A	
(Standard ist DC-Strom)	Arbeitszyklus (%)		
mA·A 👡	Frequenz (Hz)		
(Drücken Sie auf 🍑 , um AC-Strom	Impulsbreite (ms)	AC mA oder A	
auszuwählen)	Arbeitszyklus (%)		

Tabelle 1-9 Auswählen der Anzeige mit der Hz-Taste (Fortsetzung)

Drehreglerposition (Funktion)	Primäranzeige	Sekundäranzeige
mA·A 💳	Frequenz (Hz)	
(Drücken Sie zweimal auf 💚 , um	Impulsbreite (ms)	AC+DC mA
AC+DC-Strom auszuwählen)	Arbeitszyklus (%)	
Hz (Frequenzzähler) (Nur für Division-durch-1-Eingang anwendbar)	Frequenz (Hz)	Impulsbreite (ms)
	Impulsbreite (ms)	Frequenz (Hz)
	Arbeitszyklus (%)	

Die Anschlüsse auf einen Blick

VORSICHT

Um eine Beschädigung des Multimeters zu vermeiden, überschreiten Sie nicht die Eingangsbeschränkung.

Abbildung 1-8 Anschlüsse

1 Erste Schritte

Tabelle 1-10 Anschlüsse für verschiedene Messfunktionen

Drehreglerposition	Eingangsan	schlüsse	Überspannungsschutz
~ v			1.000 Vrms
≂v			1.555 VIIII5
~ mV			
nS ◄1)) Ω	M ·-H- Ω·T V·mV	сом	1.000 Vrms
Hz →I			für Kurzschluss < 0,3 A
-}⊢-↓			
μΑ ~ mA·A ~	μ Α.mA	сом	440 mA/1.000 V, 30 kA/flink
mA·A 	А	СОМ	11 A/1.000V, 30kA/flink
ллл <mark>%</mark> OUT ms	AAA. OUT	сом	
OFF É DHG	Ё∄снg	сом	440 mA/1.000 V kA/flink

Messen der Stromstärke 33 µA- und mA-Messung 33

A-Messung (Ampere) 37

Überspannungswarnung 56 Eingangswarnung 57 Ladeanschlusswarnung 58

Frequenzzähler 38

Testen von Dioden 47
Messen der Kapazität 50
Messen der Temperatur 52

Prozentuale Skalierung von 4 mA bis 20 mA 35

Messwiderstand, Leitfähigkeit und Testdurchgang 40

Warnmeldungen und Warnungen während der Messung 56

Dieses Kapitel enthält Informationen dazu, wie mit dem U1253B True RMS OLED-Multimeter Messungen durchgeführt werden.

2

Grundlegendes zu den Messanweisungen

Halten Sie beim Durchführen von Messungen die nummerierten Schritte in den Diagrammen ein. Eine Beschreibung der Schritte finden Sie in der nachfolgenden Tabelle 2-1.

Tabelle 2-1 Beschreibungen der nummerierten Schritte

Nr. Anweisungen		
1 Drehen Sie den Drehregler auf die im Diagramm gezeigte Messoption		
Schließen Sie die Testleitungen an den im Diagramm gezeigten Eingangsanschlüssen an		
3 Prüfen Sie die Testpunkte		
4 Lesen Sie die Ergebnisse von der Anzeige ab		

Messen der Spannung

Das U1253B True RMS OLED-Multimeter bietet geeignete RMS-Werte für Sinuskurven sowie für andere AC-Signale wie Rechteckwellen, Dreieckwellen und treppenförmige Wellen.

Für AC mit DC-Offset verwenden Sie AC+DC-Messungen durch Auswählen von \nearrow \mathbf{V} oder \nearrow \mathbf{mV} mit dem Drehregler.

VORSICHT

Stellen Sie vor jeder Messung sicher, dass Sie die richtigen Anschlüsse verwenden. Um eine Beschädigung des Geräts zu vermeiden, überschreiten Sie nicht die Eingangsbeschränkung.

Messen der AC-Spannung

Richten Sie das Multimeter wie in Abbildung 2-1 dargestellt ein, um die AC-Spannung zu messen. Prüfen Sie die Testpunkte und lesen Sie die Anzeige ab.

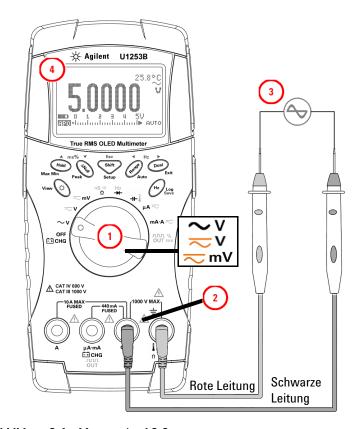


Abbildung 2-1 Messen der AC-Spannung

- Drücken Sie auf , sofern erforderlich, um sicherzustellen, dass auf der Anzeige dargestellt wird.
- Drücken Sie auf Dual, um Doppelmessungen anzuzeigen. Eine Liste der Doppelmessungen finden Sie in Tabelle 1-8, "Auswählen der Anzeige mit der Dual-Taste" auf Seite 21.
- Drücken und halten Sie Dual länger als 1 Sekunde, um den Kombinationsanzeigemodus zu beenden.

Messen der DC-Spannung

Richten Sie das Multimeter wie in Abbildung 2-2 dargestellt ein, um die DC-Spannung zu messen. Prüfen Sie die Testpunkte und lesen Sie die Anzeige ab.

- Drücken Sie, sofern erforderlich, auf , um sicherzustellen, dass angezeigt wird.
- Drücken Sie auf bual, um Doppelmessungen anzuzeigen. Eine Liste der Doppelmessungen finden Sie in Tabelle 1-8, "Auswählen der Anzeige mit der Dual-Taste" auf Seite 21.
- Drücken und halten Sie länger als 1 Sekunde, um den Kombinationsanzeigemodus zu beenden.

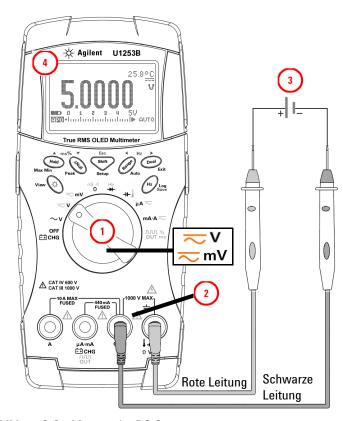
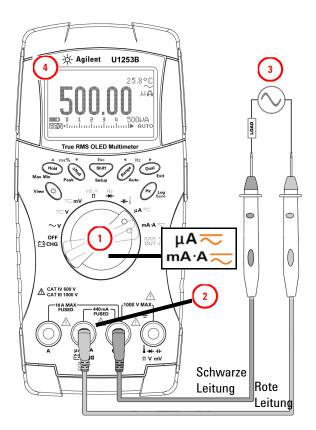


Abbildung 2-2 Messen der DC-Spannung


Messen der Stromstärke

μA- und mA-Messung

Richten Sie das Multimeter wie in Abbildung 2-3 dargestellt ein, um μA und mA zu messen. Prüfen Sie die Testpunkte und lesen Sie die Anzeige ab.

- Drücken Sie auf , sofern erforderlich, um sicherzustellen, dass auf der Anzeige dargestellt wird.
- Bei μ A-Messungen stellen Sie den Drehregler auf μ A \sim und verbinden die positive Testleitung mit μ A.mA.
- Bei mA-Messungen stellen Sie den Drehregler auf mA·A und verbinden Sie die positive Testleitung mit μA.mA.
- Bei A-Messungen (Ampere) stellen Sie den Drehregler auf mA·A — und verbinden die positive Testleitung mit A.
- Drücken Sie auf Dual, um Doppelmessungen anzuzeigen. Eine Liste der Doppelmessungen finden Sie in Tabelle 1-8, "Auswählen der Anzeige mit der Dual-Taste" auf Seite 21.
- Drücken und halten Sie Dual länger als 1 Sekunde, um den Kombinationsanzeigemodus zu beenden.

2 Messungen vornehmen

Abbildung 2-3 Messen von μA - und mA-Stromstärke

Prozentuale Skalierung von 4 mA bis 20 mA

Richten Sie das Multimeter wie in Abbildung 2-4 dargestellt ein, um die prozentuale Skalierung zu messen. Prüfen Sie die Testpunkte und lesen Sie die Anzeige ab.

HINWEIS

- Drücken Sie auf , um die prozentuale Skalierung anzuzeigen. Stellen Sie sicher, dass Soder angezeigt wird.
- Die prozentuale Skalierung für 4 mA bis 20 mA oder 0 mA bis 20 mA wird mit der entsprechenden DC mA-Messung berechnet. Das U1253B stellt automatisch die beste Auflösung entsprechend der nachfolgenden Tabelle 2-2 ein.
- Drücken Sie auf (Range), um den Messbereich zu ändern.

Die prozentuale Skalierung für 4 mA bis 20 mA oder 0 mA bis 20 mA ist wie folgt in zwei Bereiche eingerichtet:

Tabelle 2-2 Prozentuale Skalierung und Messbereich

Prozentuale Skalierung (4 mA bis 20 oder 0 mA bis 20 mA) – Immer automatische Bereichsauswahl	DC mA – Automatische oder manuelle Bereichsauswahl	
999,99%	50 mA, 500 mA	
9999,9%	50 IIIA, 500 IIIA	

2 Messungen vornehmen

Abbildung 2-4 Messskala von 4 mA bis 20 mA

A-Messung (Ampere)

Richten Sie das Multimeter wie in Abbildung 2-5 dargestellt ein, um die A-Messung (Ampere) vorzunehmen. Prüfen Sie die Testpunkte und lesen Sie die Anzeige ab.

HINWEIS

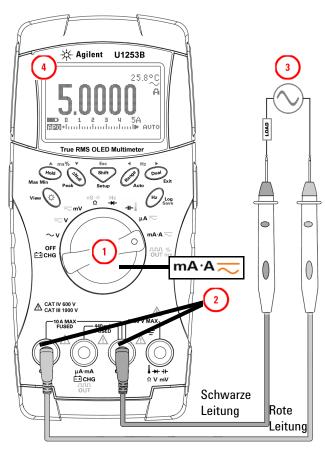


Abbildung 2-5 A-Stomstärkenmessung (Ampere)

Frequenzzähler

WARNUNG

- Verwenden Sie den Frequenzzähler für Niedrigspannungsanwendungen. Verwenden Sie den Frequenzzähler nie für Netzleitungssysteme.
- Bei einem Eingangswert höher als 30 Vpp müssen Sie den Frequenzmessungsmodus für Stromstärke- oder Spannungsmessungen statt den Frequenzzähler verwenden.

Richten Sie das Multimeter wie in Abbildung 2-6 dargestellt ein, um die Frequenz zu messen. Prüfen Sie die Testpunkte und lesen Sie die Anzeige ab.

- Drücken Sie auf , um die Frequenzzählerfunktion (auszuwählen. Die Standard-Eingabesignalfrequenz wird durch 1 dividiert. Dies ermöglicht die Messung von Signalen mit einer maximalen Frequenz von 985 kHz.
- Wenn die Messwerte instabil oder gleich Null sind, drücken Sie Range, um eine Division der Eingangssignalfrequenz durch 100 auszuwählen (auf der Anzeige wird IIII angezeigt). Dies ermöglicht die Messung von Signalen mit einer höheren Frequenz von bis zu 20 MHz.
- Das Signal liegt außerhalb des Bereichs, wenn die Messwerte nach Ausführen des o. g. Schritts immer noch instabil sind.
- Drücken Sie auf (mz), um zwischen Impulsbreiten- (ms), Arbeitszyklus-(%) und Frequenzmessungen (Hz) zu wechseln.

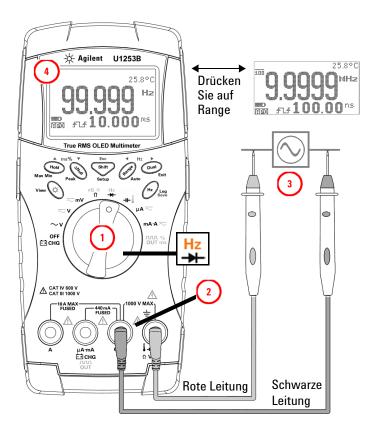


Abbildung 2-6 Messungsfrequenz

Messwiderstand, Leitfähigkeit und Testdurchgang

VORSICHT

Trennen Sie alle Schaltkreise und entladen Sie alle Hochspannungskondensatoren, bevor Sie den Widerstand oder die Leitfähigkeit messen, um möglichen Schaden am Multimeter oder an dem Gerät, das Sie testen, zu verhindern.

Richten Sie das Multimeter wie in Abbildung 2-8 dargestellt ein, um den Widerstand zu messen. Messen Sie dann die Testpunkte (durch Parallelschalten des Widerstands) und lesen Sie die Anzeige ab.

HINWEIS

Drücken Sie auf , um zwischen dem akustischen Durchgangstest (;] ;] oder , abhängig von der Einrichtungskonfiguration), der Leitfähigkeitsmessung () und der Wiederstandmessung () zu wechseln (siehe Abbildung 2-9 auf Seite 43).

Smart Ω

Mithilfe der Offset-Ausgleichsmethode schaltet Smart Ω unerwartete DC-Spannungen im Instrument, am Eingang oder in der zu messenden Schaltung aus, wodurch es bei Widerstandsmessungen zu Fehlern kommen kann. Außerdem zeigt es auf der Sekundäranzeige auch die Vorspannung oder Kriechstrom (basierend auf Vorspannung und korrigiertem Widerstandswert berechnet) an. Das Multimeter nutzt den mit der Offset-Ausgleichsmethode ermittelten Unterschied zwischen zwei Widerstandsmessungen, wenn zwei unterschiedliche Testströme angelegt werden, um eine Offset-Spannung im Eingangsschaltkreis festzustellen. Die resultierende angezeigte Messung korrigiert diesen Offset, sodass Sie ein präziseres Widerstandsmessungsergebnis erhalten.

Die Funktion Smart Ω gilt nur für Widerstandsbereiche von 500 Ω , 5 k Ω , 50 k Ω und 500 k Ω . Die maximal korrigierbare Offset-/Vorspannung beträgt ±1,9 V für den Bereich von 500 Ω und ±0,35 V für die Bereiche von 5 k Ω , 50 k Ω und 500 k Ω .

- Drücken Sie auf Dual , um die Funkton Smart Ω zu aktivieren.
 Drücken Sie erneut auf Dual , um durch Vorspannungs- oder Kriechstromanzeige zu wechseln.
- Drücken Sie für mehr als eine Sekunde auf $^{\text{Dual}}$, um die Funktion Smart Ω zu deaktivieren.

HINWEIS

Die Messung dauert länger, wenn $Smart\ \Omega$ aktiviert ist.

Vorspannungsanzeige

Abbildung 2-7 Art der Anzeige, wenn Smart Ω aktiviert ist

2 Messungen vornehmen

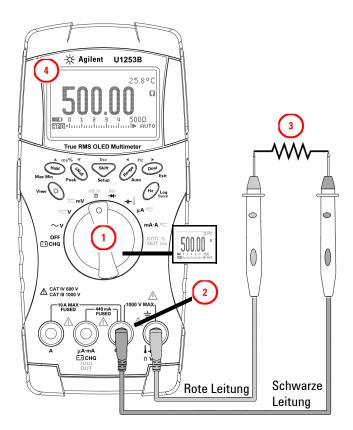
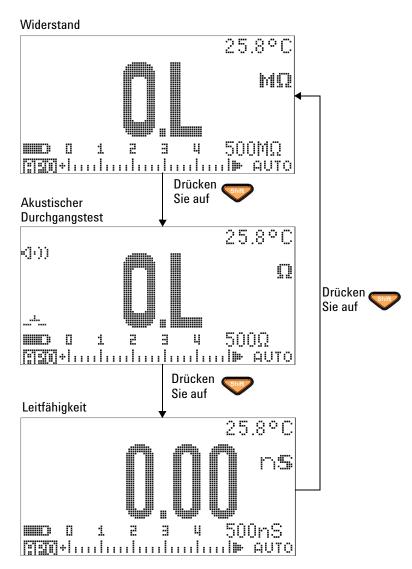



Abbildung 2-8 Messungswiderstand

Abbildung 2-9 Widerstands-, akustische Durchgangs- und Leitfähigkeitstests

Akustischer durchgangstest

Im Bereich von 500 Ω ertönt ein Signalton, wenn der Widerstandswert unter 10 Ω fällt. Für die anderen Bereiche ertönt ein Signalton, wenn der Widerstand unter die in Tabelle 2-3 angegebenen typischen Werte fällt.

Tabelle 2-3 Akustische Durchgangstestmessung

Messbereich	Signaltonschwellenwert
500,00 Ω	< 10 Ω
5,0000 kΩ	< 100 Ω
50,000 kΩ	<1 kΩ
500,00 kΩ	< 10 kΩ
5,0000 MΩ	<100 kΩ
50,000 MΩ	<1 MΩ
500,00 MΩ	< 10 MΩ

HINWEIS

Beim Durchgangstest können Sie entweder den Kurzschluss-Durchgang oder den offenen Durchgang testen.

- Standardmäßig ist das Multimeter auf Kurzschluss-Durchgang eingestellt.
- Drücken Sie auf Dual, um den offenen Durchgang zu wählen.

Kurzschluss-Durchgang

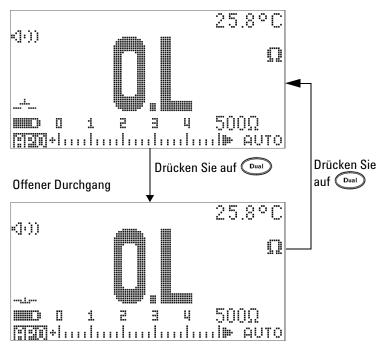


Abbildung 2-10 Kurzschluss-Durchgang- und Offener-Durchgang-Test

Leitfähigkeit

Richten Sie das Multimeter wie in Abbildung 2-11 dargestellt ein, um die Leitfähigkeit zu messen. Prüfen Sie die Testpunkte und lesen Sie die Anzeige ab.

Die Leitfähigkeitsmessfunktion erleichtert die Messung von sehr hohem Widerstand von bis zu 100 GW .. Da Messungen bei hohem Widerstand anfällig für Rauschen sind, können Sie Messungen bei durchschnittlichen Bedingungen im dynamischen Aufzeichnungsmodus aufzeichnen. Weitere Informationen finden Sie in Abschnitt "Dynamische Aufzeichnung" auf Seite 60.

2 Messungen vornehmen

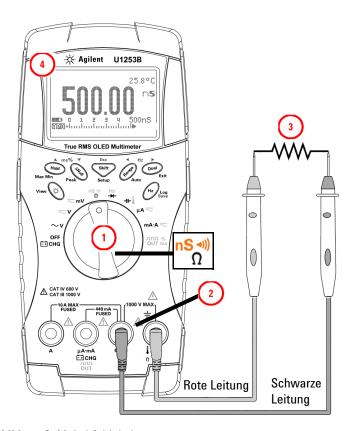


Abbildung 2-11 Leitfähigkeitsmessung

Testen von Dioden

VORSICHT

Trennen Sie alle Schaltkreise und entladen Sie alle hohen Hochspannungskondensatoren, bevor Sie Dioden messen, um möglichen Schaden am Multimeter zu verhindern.

Um eine Diode zu testen, schalten Sie den Schaltkreis aus und entfernen die Diode aus dem Schaltkreis.

Richten Sie das Multimeter wie in Abbildung 2-12 dargestellt ein und schließen Sie dann die rote Testleitung am positiven Anschluss (Anode) und die schwarze Testleitung am negativen Anschluss (Kathode) an. Lesen Sie die Anzeige ab.

HINWEIS

- · Die Kathode einer Diode ist mit einem Streifen versehen
- Dieses Multimeter kann eine Vorwärtsspannung von Dioden von bis zu 3,1 V anzeigen. Die Vorwärtsspannung von typischen Dioden liegt im Bereich 0,3 V bis 0,8 V.

Vertauschen Sie anschließend die Testleitungen und messen Sie die an den Dioden anliegende Spannung erneut (siehe Abbildung 2-13 auf Seite 49). Das Ergebnis des Diodentests basiert auf folgenden Kriterien:

- Eine Diode wird als gut betrachtet, wenn das Multimeter
 OL im Sperrvorspannungsmodus anzeigt.
- Eine Diode wird als kurzgeschlossen betrachtet, wenn das Multimeter ungefähr 0 V im Vorwärtsspannungsmodus und im Sperrvorspannungsmodus anzeigt und das Multimeter kontinuierlich piept.
- Eine Diode wird als offen betrachtet, wenn das Multimeter
 OL im Vorwärtsspannungsmodus und im Sperrvorspannungsmodus anzeigt.

2 Messungen vornehmen

Abbildung 2-12 Messen der Vorwärtsspannung einer Diode

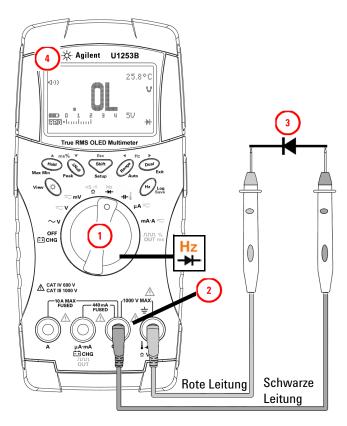


Abbildung 2-13 Messen der Sperrvorspannung einer Diode

Messen der Kapazität

VORSICHT

Trennen Sie den Schaltkreis und entladen Sie alle Hochspannungskondensatoren, bevor Sie die Kapazität messen, um möglichen Schaden am Multimeter oder an dem Gerät, das Sie testen, zu verhindern. Verwenden Sie die DC-Spannungsfunktion um zu bestätigen, dass die Kondensatoren vollständig entladen sind.

Das U1253B True RMS OLED-Multimeter berechnet die Kapazität, indem der Kondensator über einen bestimmten Zeitraum mit einer bekannten Stromstärke aufgeladen wird. Anschließend wird die Spannung gemessen und die Kapazität berechnet. Je größer der Kondensator, desto länger die Ladezeit. Im Folgenden finden Sie einige Tipps für die Messung der Kapazität:

Tipps zum Messen:

- Zum Messen von Kapazitäten über 10.000 µF, entladen Sie zunächst den Kondensator, und wählen anschließend einen angemessenen Bereich für die Messung aus. Dadurch wird die Messgeschwindigkeit beschleunigt. Stellen Sie zudem sicher, dass der richtige Kapazitätswert erhalten wird.
- Um kleine Kapazitäten zu messen, drücken Sie bei offenen Messleitungen auf (anul), um die Restkapazität des Multimeters und der Leitungen zu subtrahieren.

HINWEIS

bedeutet, dass der Kondensator aufgeladen wird. Libedeutet, dass der Kondensator entladen wird.

Richten Sie das Multimeter wie in Abbildung 2-14 dargestellt ein. Legen Sie die rote Testleitung am positiven Anschluss des Kondensators und die schwarze Testleitung am negativen Anschluss an. Lesen Sie die Anzeige ab.

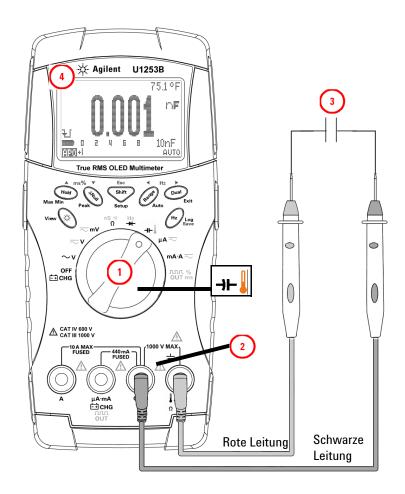
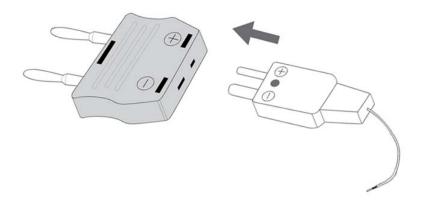


Abbildung 2-14 Kapazitätsmessungen

Messen der Temperatur


VORSICHT

Knicken Sie die Thermoelementkabel nicht im spitzen Winkel ab. Das wiederholte Knicken über einen längeren Zeitraum kann zum Bruch der Leitung führen.

Der Leistentyp der Thermoelementsonde ist geeignet zum Messen von Temperaturen von -20°C bis 200°C in PTFE-kompatiblen Umgebungen. Verwenden Sie die Thermoelementsonde nicht außerhalb des empfohlenen Betriebsbereichs. Tauchen Sie die Thermoelementsonde nicht in Flüssigkeiten ein. Verwenden Sie eine anwendungsspezifische Thermoelementsonde – eine Immersionssonde für Flüssigkeiten oder Gel und eine Luftsonde für Luftmessungen.

Richten Sie das Multimeter zur Temperaturmessung wie in Abbildung 2-17 dargestellt ein oder führen Sie folgende Schritte aus:

- 1 Drücken Sie , um die Temperaturmessung auszuwählen.
- 2 Schließen Sie die Miniaturwärmesonde an den Übertragungsadapter ohne Ausgleich an, wie in Abbildung 2-15 gezeigt. Schließen Sie die Wärmesonde dann mit dem Adapter an die Eingangsanschlüsse des Multimeters an, wie in Abbildung 2-16 gezeigt.
- **3** Für eine optimale Messleistung sollte das Multimeter mindestens eine Stunde in der Betriebsumgebung platziert werden, damit sich die Einheit an die Umgebungstemperatur anpassen kann.
- 4 Reinigen Sie die Messoberfläche und achten Sie darauf, dass die Sonde die Oberfläche sicher berührt. An der Oberfläche darf keine Spannung anliegen.
- **5** Wenn Sie über der Außentemperatur messen, verschieben Sie das Thermoelement entlang der Oberfläche, bis Sie zum höchsten Temperaturmesswert kommen.
- **6** Wenn Sie unter der Außentemperatur messen, verschieben Sie das Thermoelement entlang der Oberfläche, bis Sie zum niedrigsten Temperaturmesswert kommen.
- 7 Verwenden Sie für schnelle Messungen den Null-Grad-Ausgleich, um die Temperaturänderung des Thermoelementsensors zu sehen. Der Null-Grad-Ausgleich hilft Ihnen sofort bei der Messung von relativen Temperaturen.

Abbildung 2-15 Anschließen der Wärmesonde am Übertragungsadapter ohne Ausgleich

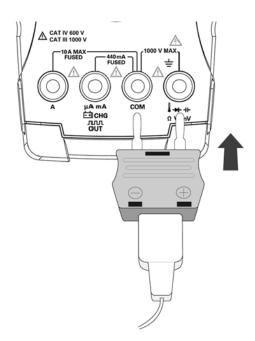


Abbildung 2-16 Anschließen der Sonde mit Adapter am Multimeter

2 Messungen vornehmen

Wenn Sie in einer Umgebung arbeiten, in der die Umgebungstemperaturen nicht konstant sind, gehen Sie wie folgt vor:

- 1 Drücken Sie auf Dual, um den 0°C-Ausgleich auszuwählen. Dies ermöglicht Ihnen eine schnelle Messung der relativen Temperatur.
- 2 Vermeiden Sie den Kontakt zwischen der Thermoelementsonde und der Messoberfläche.
- 3 Nachdem Sie eine konstante Messung erhalten haben, drücken Sie (ANUII), um eine Messung als relative Referenztemperatur festzulegen.
- 4 Berühren Sie die Messoberfläche mit der Thermoelementsonde.
- **5** Lesen Sie die relative Temperatur von der Anzeige ab.

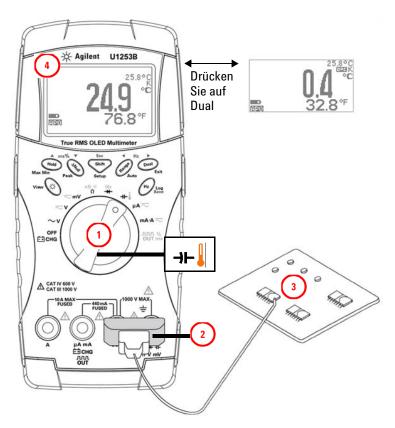


Abbildung 2-17 Oberflächentemperaturmessung

Warnmeldungen und Warnungen während der Messung

Überspannungswarnung

Beachten Sie zu Ihrer eigenen Sicherheit die Überspannungswarnung. Entfernen Sie bei Anzeige dieser Warnung umgehend die Testleitungen von der Messquelle.

Das Multimeter bietet eine Überspannungswarnung für Spannungsmessungen sowohl im automatischen als auch im manuellen Bereichsmodus. Das Multimeter piept periodisch, sobald die zu messende Spannung den im Einrichtungsmodus festgelegten Wert für die Warnung V-ALERT überschreitet. Entfernen Sie die Testleitungen umgehend von der Messoberfläche.

Diese Funktion ist standardmäßig deaktiviert. Stellen Sie sicher, dass die Festlegung des Werts für die Spannungwarnung Ihren Anforderungen entspricht.

Das Multimeter zeigt zudem = als frühzeitige Warnung für gefährliche Spannung an, wenn die gemessene Spannung gleich oder höher als 30 V in allen drei DC V-, AC V- und AC+DC V-Messmodi ist.

Wenn bei einem manuell ausgewählten Messbereich der gemessene Wert außerhalb des Bereichs liegt, wird auf der Anzeige **0L** angezeigt.

Eingangswarnung

Das Multimeter gibt eine Dauersignalton aus, wenn die Testleitung in den A-Eingangsanschluss eingesteckt wird, aber der Drehregler nicht an der entsprechenden mA.A-Position steht. Die Warnmeldung **Error ON A INPUT** wird angezeigt, bis die Testleitung vom **A**-Eingangsanschluss entfernt wird. Siehe Abbildung 2-18.

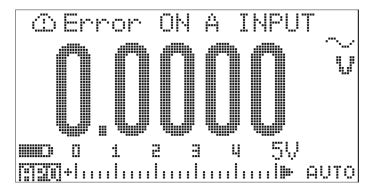


Abbildung 2-18 Eingangsanschlusswarnung

2

Ladeanschlusswarnung

Das Multimeter lässt ein andauerndes Warnsignal ertönen, wenn der EtCHG Anschluss ein Spannungsniveau ermittelt, dass höher als 5 V ist und der Drehregler nicht auf der entsprechenden EtCHG-Position steht. Die Warnmeldung Error ON mA INPUT wird angezeigt, bis die Leitung vom EtCHG Eingangsanschluss entfernt wird.

Siehe unten stehende Abbildung 2-19.

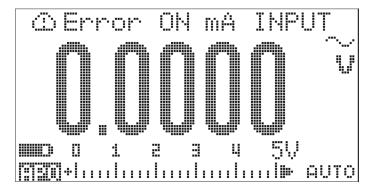


Abbildung 2-19 Ladeanschlusswarnung

Datenprotokollierung 73

Manuelle Protokollierung 73 Intervallprotokollierung 75

Rechteckwellenausgabe 79 Remotekommunikation 83

Überprüfen der protokollierten Daten 77

Dieses Kapitel enthält Informationen zu den verfügbaren Funktionen für das U1253B True RMS OLED-Multimeter.

Dynamische Aufzeichnung

Der dynamische Aufzeichnungsmodus kann zum Ermitteln von periodischem Einschalten oder Ausschalten von Spannung oder von Stromüberspannung verwendet werden. Außerdem kann er die Messleistung überprüfen, ohne dass Sie während dieses Prozesses anwesend sein müssen. Während die Messwerte aufgezeichnet werden, können Sie andere Aufgaben durchführen.

Die Durchschnittsmesswerte sind nützlich zum Ausgleichen von instabilen Eingaben, zum Schätzen der Zeit in Prozent, die der Schaltkreis arbeitet, und zur Überprüfung der Schaltkreisleistung. Die verstrichene Zeit wird auf der Sekundäranzeige angegeben. Die maximale Zeit beträgt 99.999 Sekunden. Wenn die maximale Zeit überschritten wurde, wird **0L** auf der Anzeige angegeben.

- 3 Drücken Sie länger als 1 Sekunde auf (Hold) oder (Dual), um den dynamischen Aufzeichnungsmodus zu verlassen.

HINWEIS

- Drücken Sie auf out, um erneut die dynamische Aufzeichnung zu starten.
- Der Durchschnittswert ist der wahre Durchschnittswert von allen im dynamischen Aufzeichnungsmodus vorgenommenen Messungen. Wenn eine Überspannung aufgezeichnet wurde, wird die Durchschnittsberechnungsfunktion angehalten, und der Durchschnittswert ist **OL** (Überspannung). Auto Power Off ist im dynamischen Aufzeichnungsmodus deaktiviert.

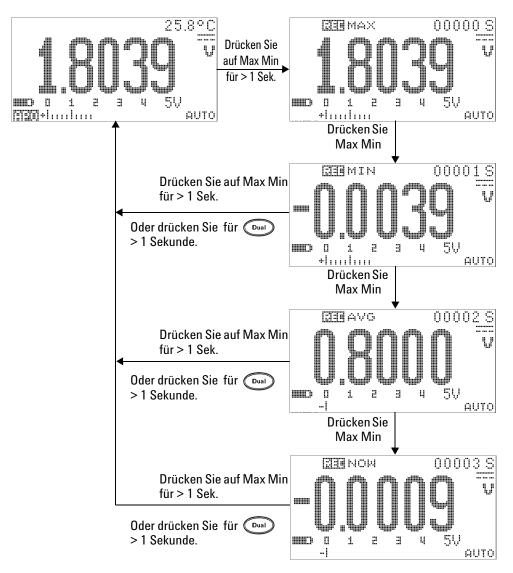


Abbildung 3-1 Dynamische Aufzeichnung

Halten von Daten (Halten mit Auslöser)

Die Funktion zum Halten von Daten ermöglicht Ihnen, die Anzeige der digitalen Werte zu fixieren.

- 1 Drücken Sie auf Hold, um die angezeigten Werte zu fixieren, und um den manuellen Auslösermodus zu aktivieren.
- 2 Drücken Sie erneut Hold, um den nächsten gemessenen Wert beizubehalten. Der Buchstabe "T" in der Meldeanzeige "Hilligg" blinkt, bevor der neue Wert auf der Anzeige aktualisiert wird.
- 3 Im Datenhaltemodus können Sie auf drücken, um zwischen den DC-, AC- und AC+DC-Messungen zu wechseln.
- **4** Drücken und halten Sie Hold oder Dual länger als 1 Sekunde, um den Datenhaltemodus zu beenden.

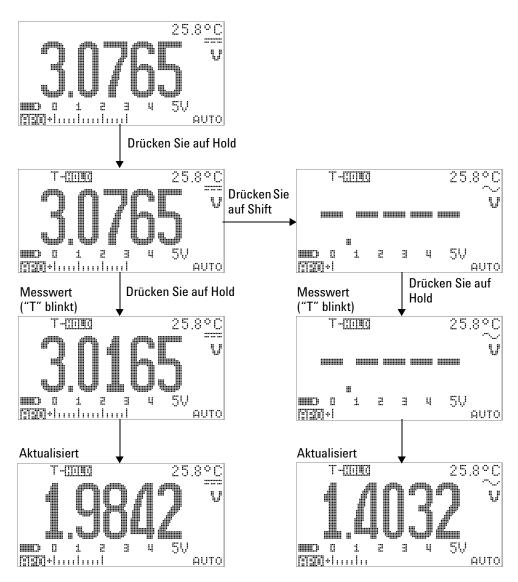


Abbildung 3-2 Datenhaltemodus

Halten aktualisieren

Die Funktion "Halten aktualisieren" ermöglicht Ihnen, die angezeigten Werte zu halten. Die Balkendiagrammanzeige wird nicht angehalten und gibt weiterhin den momentan gemessenen Wert wieder. Verwenden Sie den Einrichtungsmodus, um den Modus "Halten aktualisieren" zu aktivieren, wenn Sie mit schwankenden Werten arbeiten. Diese Funktion wird automatisch ausgelöst oder aktualisiert den gehaltenen Wert mit neuen Messwerten und erinnert Sie durch einen Signalton.

- 2 Ein neu gemessener Wert kann fixiert werden, sobald die Abweichung der Messwerte die Einstellung des Änderungszählers überschreitet. Während das Multimeter auf einen neuen stabilen Wert wartet, blinkt der Buchstabe "R" in der Meldeanzeige
- 4 Drücken Sie erneut auf Hold, um diese Funktion zu deaktivieren. Sie können zudem länger als 1 Sekunde auf Duai drücken, um diese Funktion zu verlassen.

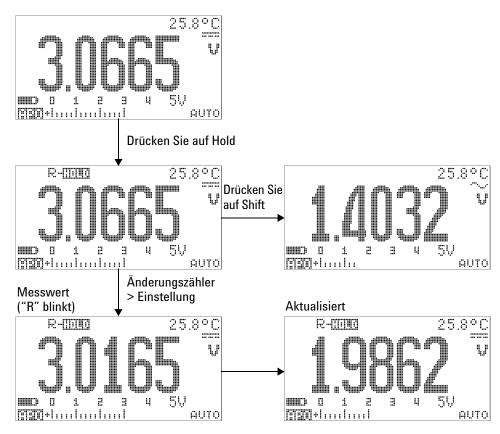


Abbildung 3-3 Modus "Halten aktualisieren"

HINWEIS

- Bei Spannungs- und Stromstärkenmessungen wird der gehaltene Wert nicht aktualisiert, wenn der Messwert unter 500 Zählern liegt.
- Der gehaltene Wert wird für Widerstands- und Diodenmessungen nicht aktualisiert, wenn der Messwert sich im Status OL (offener Status) befindet.
- Für alle Messtypen wird der Messwert nicht aktualisiert, bevor der Messwert einen stabilen Status erreicht.

Null (Relativ)

Die Null-Funktion zieht einen gespeicherten Wert von der aktuellen Messung ab und zeigt den Unterschied zwischen den zwei Werten an.

1 Drücken Sie (and), um die angezeigte Messung als Referenzwert zu speichern, der von nachfolgenden Messungen abgezogen wird, und die Anzeige auf 0 zurückzusetzen.

HINWEIS

Null kann sowohl für die automatische als auch für die manuelle Bereichsauswahl festgelegt werden, aber nicht im Fall einer Überspannung.

- 2 Drücken Sie (and), um den gespeicherten Referenzwert anzuzeigen. Die Eine und der gesicherte Referenzwert werden für 3 Sekunden angezeigt.
- 3 Drücken Sie während der 3 Sekunden auf wenn ü' in in und der gesicherte Referenzwert angezeigt werden, um diesen Modus zu verlassen.

HINWEIS

- Im Modus für die Widerstandsmessung liest das Multimeter aufgrund des Widerstands der Testleitungen einen anderen Wert als null, selbst wenn zwischen den beiden Testleitungen direkter Kontakt besteht.
 Verwenden Sie die Null-Funktion, um die Anzeige auf null einzustellen.
- Im Modus zur DC-Spannungsmessung beeinflusst der Wärmeeffekt die Genauigkeit. Kürzen Sie die Testleitungen und drücken Sie auf wenn der angezeigte Wert stabil ist, um die Anzeige auf null einzustellen.

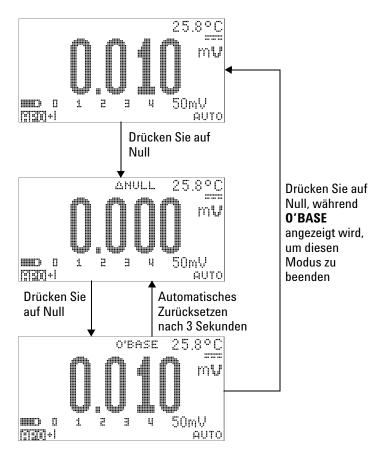


Abbildung 3-4 Null (relative)

Dezibelanzeige

Die dBm-Einheit berechnet die Leistung, die an einem Bezugswiderstand relativ zu 1 mW erzeugt wird. Diese Operation kann zur Dezibelkonvertierung auf Messungen für DC V, AC V sowie auf AC + DC V angewendet werden. Die Spannungsmessung wird mithilfe der folgenden Formel zu dBM konvertiert:

$$dBm = 10\log\left(\frac{1000 \times (measured\ voltage\)^2}{reference\ impedance}\right)$$
 (1)

Die Referenzimpedanz kann im Einrichtungsmodus von 1 Ω bis 9.999 Ω ausgewählt werden. Der Standardwert ist 50 Ω .

Die dBV-Einheit berechnet die Spannung im Bezug auf 1 V. Die Formel ist nachstehend dargestellt:

$$dBV = 20\log(measured\ voltage)$$
 (2)

- 1 Wenn der Drehregler auf **V**, **V** oder **mV** steht, drücken Sie auf Dual, um zur dBm- oder dBV-Messung auf der Primäranzeige zu navigieren. Die Spannungsmessung wird auf der Sekundäranzeige angegeben.
- 2 Drücken Sie länger als 1 Sekunde auf Dual, um diesen Modus zu beenden.

^[1] Abhängig von der Konfiguration im Einrichtungsmodus.

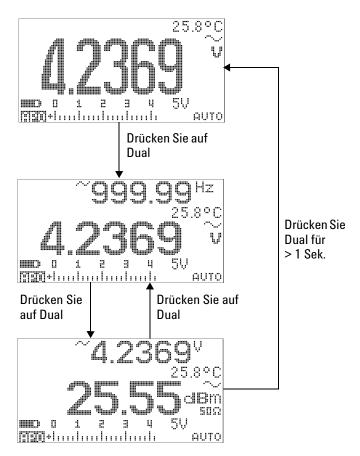


Abbildung 3-5 dBm-Anzeigemodus

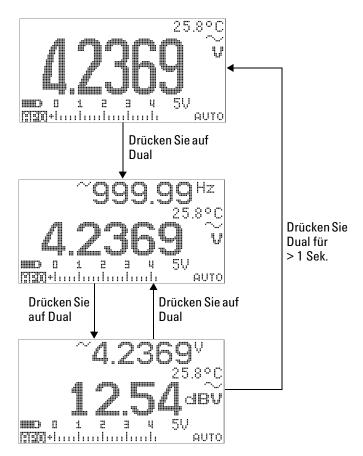


Abbildung 3-6 dBV-Anzeigemodus

1-ms-Spitzenwert-Haltemodus

Diese Funktion ermöglicht die Messung von Spitzenspannung für die Analyse von Komponenten wie Blindstromkompensations-Kondensatoren und Energieverteilungstransformatoren. Die erhaltene Spitzenspannung kann zum Bestimmen des Spitzenfaktors verwendet werden:

$$Crest factor = \frac{Peak \ value}{True \ RMS \ value}$$
 (3)

- 1 Drücken Sie länger als 1 Sekunde auf (ON) um den 1-ms-Spitzenwert-Haltemodus ein- (ON) und auszuschalten (OFF).
- 2 Drücken Sie auf Hold, um zwischen den Max- und Min-Spitzenwerten zu wechseln. Figural den maximalen Spitzenwert an, während Figural den minimalen Spitzenwert angibt.

HINWEIS

- Wenn der Messwert **OL** ist, drücken Sie auf Range, um den Messbereich zu ändern und um die Spitzenaufnahmemessung erneut zu starten.
- Wenn Sie die Spitzenaufnahme erneut starten möchten, ohne den Bereich zu ändern, drücken Sie auf Dual.
- 3 Drücken Sie länger als 1 Sekunde auf (anul) oder (bual), um diesen Modus zu beenden.
- **4** In dem in Abbildung 3-7 auf Seite 72 aufgeführten Messbeispiel ist der Scheitelfaktor 2,2669/1,6032 = 1,414.

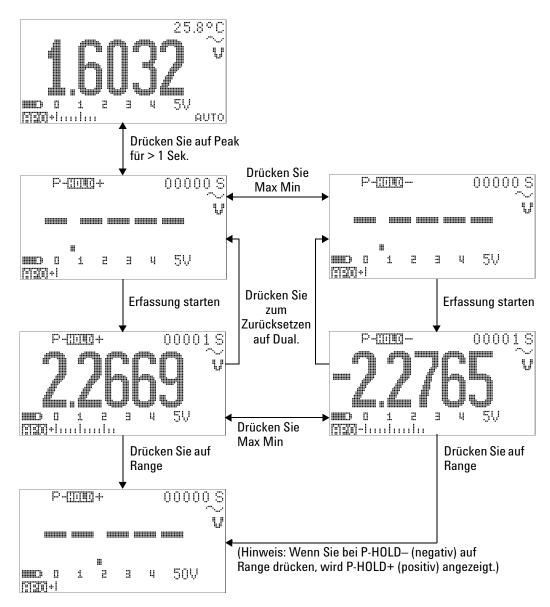


Abbildung 3-7 1-ms-Spitzenwert-Haltemodus

Datenprotokollierung

Die Funktion zur Datenprotokollierung erleichtert das Aufnehmen von Testdaten für zukünftige Überprüfungen oder Analysen. Im permanenten Speicher abgelegte Daten bleiben gespeichert, wenn das Multimeter ausgeschaltet ist, oder wenn die Batterie gewechselt wird.

Bei den beiden Optionen handelt es sich um Funktionen zur manuellen (HAND) und Intervallprotokollierung (TIME), die im Einrichtungsmodus festgelegt werden.

Die Datenprotokollierung zeichnet nur die Werte der Primäranzeige auf.

Manuelle Protokollierung

Stellen Sie zunächst sicher, dass die manuelle Protokollierung im Einrichtungsmodus spezifiziert wurde.

- 1 Drücken Sie länger als 1 Sekunde auf (Hz), um den aktuellen Wert und die aktuelle Funktion der Primäranzeige im Speicher abzulegen. It und der Protokollierungsindex werden für drei Sekunden angezeigt.
- 2 Drücken und halten Sie (Hz) erneut für den nächsten Wert, der im Speicher abgelegt werden soll.

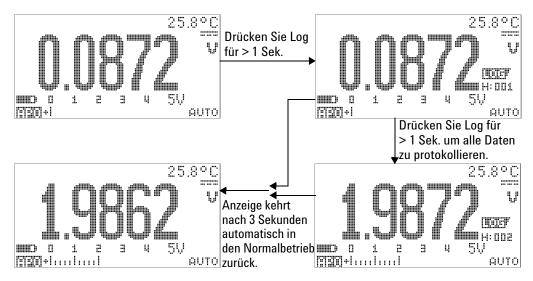


Abbildung 3-8 Manuelle Protokollierung

HINWEIS

Es können maximal 100 Messwerte gespeichert werden. Wenn die 100 Einträge vorliegen, wird "Full" auf der Sekundäranzeige angegeben (siehe Abbildung 3-9).

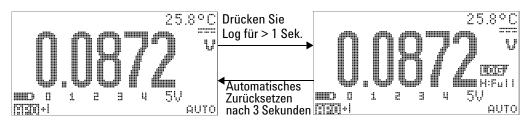


Abbildung 3-9 Volles Protokoll

Intervallprotokollierung

Stellen Sie zunächst sicher, dass die Intervallprotokollierung (Zeit) im Einrichtungsmodus angegeben ist.

1 Drücken Sie länger als 1 Sekunde auf (Hz), um den aktuellen Wert und die Funktion auf der Primäranzeige im Speicher des Messgeräts zu speichern. Intervall (LOG TIME), das im Einrichtungsmodus festgelegt wurde, gespeichert. Informationen zur Verwendung dieses Modus entnehmen Sie Abbildung 3-10 auf Seite 76.

HINWEIS

Es können maximal 1.000 Einträge gespeichert werden. Wenn 1.000 Einträge vorliegen, zeigt der Protokollierungsindex "Full" an.

2 Drücken Sie (Hz) länger als 1 Sekunde, um diesen Modus zu beenden.

HINWEIS

Wenn die Intervallprotokollierung (TIME) ausgeführt wird, sind alle Tastenfeldoperationen deaktiviert, außer **Log**. Wenn diese Operation länger als 1 Sekunde gedrückt wird, wird der Modus beendet. Darüber hinaus ist "Auto Power Off" während der Intervallprotokollierung deaktiviert.

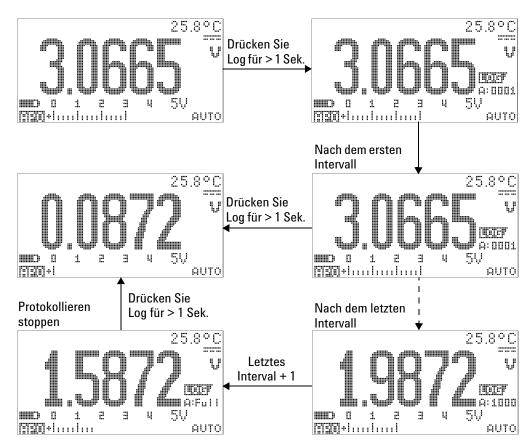


Abbildung 3-10 Intervallprotokollierungsmodus (TIME)

Überprüfen der protokollierten Daten

- 1 Drücken Sie länger als 1 Sekunde auf (), um den Protokollansichtsmodus aufzurufen. Der zuletzt protokollierte Eintrag, [] , und der zuletzt protokollierte Index werden angezeigt.
- 2 Drücken Sie auf , um zwischen der manuellen Protokollierung und dem Intervallprotokollansichtsmodus (Zeit) zu wechseln.
- **3** Drücken Sie auf oder , um durch die protokollierten Daten zu navigieren. Drücken Sie auf , um die erste Aufzeichnung und auf , um die letzte Aufzeichnung zur schnellen Navigation auszuwählen.
- 4 Drücken Sie im entsprechenden Protokollansichtsmodus länger als 1 Sekunde auf (Hz), um die protokollierten Daten zu löschen.
- **5** Drücken Sie länger als 1 Sekunde auf , um die Protokollierung zu stoppen und diesen Modus zu verlassen.

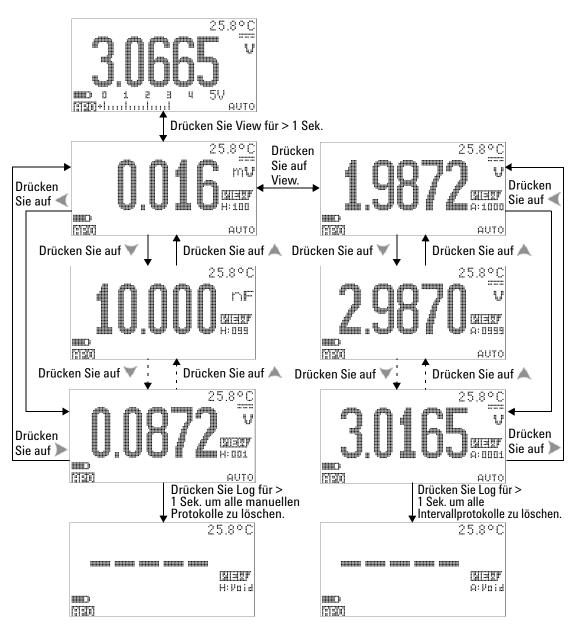


Abbildung 3-11 Protokollansichtsmodus

Rechteckwellenausgabe

Die Rechteckwellenausgabe des U1253B True RMS OLED-Multimeter kann verwendet werden, um eine Impulsbreitemodulation (Pulse Width Modulation, PWM) zu erzeugen oder um einen synchronen Zeitgeber (Baudrategenerator) bereitzustellen. Sie können diese Funktion auch zum Überprüfen und Kalibrieren von Durchflussmesseranzeigen, Zählern, Tachometern, Oszilloskopen, Frequenzwandlern, Frequenzübermittlern und anderen Frequenzeingabegeräten verwenden.

Auswählen der Rechteckwellenausgabefrequenz

- 1 Richten Sie den Drehregler auf 500 % ein. Wie entsprechend auf der Primär- und Sekundäranzeige abgegeben, ist die Standardimpulsbreite 0,8333 ms und die Standardfrequenz 600 Hz.
- 2 Drücken Sie auf , um zwischen Arbeitszyklus und Impulsbreite für die Primäranzeige zu wechseln.
- 3 Drücken Sie auf doder, um zwischen den verfügbaren Frequenzen zu wechseln (29 Frequenzen stehen zur Auswahl).

Tabelle 3-1 Verfügbare Frequenzen für Rechteckwellenausgabe

Frequenz (Hz)

0,5, 1, 2, 5, 6, 10, 15, 20, 25, 30, 40, 50, 60, 75, 80, 100, 120, 150, 200, 240, 300, 400, 480, 600, 800, 1.200, 1.600, 2.400, 4.800

3 Merkmale und Funktionen

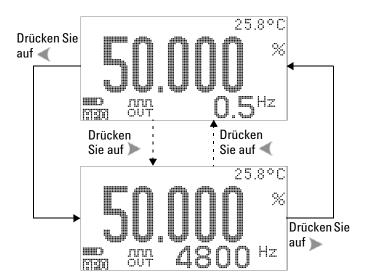


Abbildung 3-12 Frequenzanpassung für Rechteckwellenausgabe

Auswählen des Arbeitszyklus der Rechteckwellenausgabe

- 1 Richten Sie den Drehregler auf out ms ein.
- 2 Drücken Sie auf , um auf der Primäranzeige einen Arbeitszyklus (%) auszuwählen.
- 3 Drücken Sie auf ▲ oder ▼, um den Arbeitszyklus anzupassen. Der Arbeitszyklus kann in 256 Schritten durchlaufen werden, wobei jeder Schritt 0,390625% entspricht. Die bestmögliche Auflösung der Anzeige ist 0,001%.

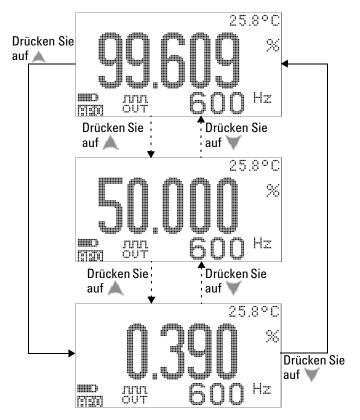


Abbildung 3-13 Arbeitszyklusanpassung für Rechteckwellenausgabe

Auswählen der Impulsbreite der Rechteckwellenausgabe

- 1 Richten Sie den Drehregler auf out ms ein.
- 2 Drücken Sie auf , um eine Impulsbreite (ms) auf der Primäranzeige auszuwählen.
- 3 Drücken Sie auf ▲ oder ▼, um die Impulsbreite anzupassen. Die Impulsbreite kann in 256 Schritten durchlaufen werden, wobei jeder Schritt 1/(256 × Frequenz) entspricht. Die angezeigte Impulsbreite wird automatisch auf 5 Ziffern angepasst (zwischen 9,9999 und 9999,9 ms).

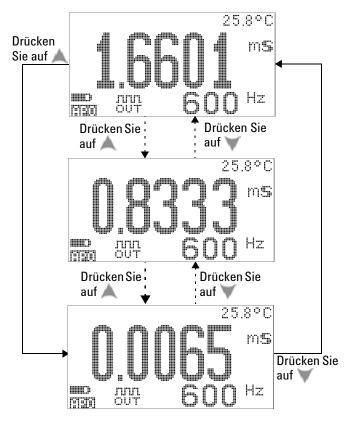


Abbildung 3-14 Impulsbreitenanpassung für Rechteckwellenausgabe

Remotekommunikation

Dieses Multimeter unterstützt bidirektionale (Vollduplex) Kommunikation, die das Speichern von Daten vom Multimeter zu einem PC erleichtert. Das hierfür erforderliche Zubehör ist ein optionales IR-USB-Kabel, das in Verbindung mit einer von der Agilent Website herunterladbaren Anwendungssoftware eingesetzt wird.

Weitere Informationen zur PC-Multimeter-Remotekommunikation erhalten Sie, wenn Sie nach dem Starten der Agilent GUI Data Logger Software die Hilfe aufrufen oder in der Kurzanleitung zum GUI Data Logger (U1251-9003) nachlesen.

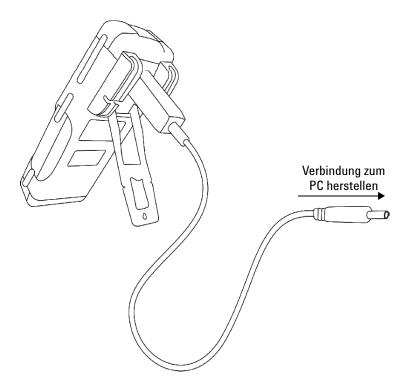


Abbildung 3-15 Kabelverbindung für die Remotekommunikation

3 Merkmale und Funktionen

Ändern der Standardwerkseinstellung

```
Auswahl des Einrichtungsmodus 86
Standardwerkseinstellungen und verfügbare Einstellugsoptionen 87
 Einstellen von Datenhaltemodus/Modus "Halten aktualisieren"
 Einstellen des Datenprotokollierungsmodus 92
 Einrichten der dB-Messung 94
 Einstellen der Referenzimpedanz für dBm-Messung 95
 Einstellen von Thermoelementtypen 96
 Einstellen der Temperatureinheit 96
 Einstellen der Prozentskalenausgabe 98
 Einstellen der Mindestmessfrequenz 100
 Einstellen der Signaltonfrequenz 101
 Einstellen des automatischen Abschaltmodus 102
 Einstellen der Helligkeitsstärke der Hintergrundbeleuchtung bei
 Einschalten 104
 Einstellen der Einschaltmelodie 105
 Einstellen des Begrüßungsbildschirms beim Einschalten 105
 Einstellen der Baudrate 106
 Einstellen der Paritätsprüfung 108
 Einstellen von Datenbits 107
 Einstellen des Echomodus 109
 Einstellen des Druckmodus 110
 Version 111
 Seriennummer 111
 Spannungswarnung 112
 M-initial 113
 Aktualisierungsgeschwindigkeit der Glättung 117
 Rücksetzen auf die Standardwerkseinstellungen 118
 Einstellen des Batterietyps 119
 Einstellen des DC-Filters 120
```

In diesem Kapitel wird erklärt, wie die Standardwerkseinstellungen des U1253B True RMS OLED-Multimeters geändert sowie weitere verfügbare Einstellungen vorgenommen werden.

Auswahl des Einrichtungsmodus

Um den Einrichtungsmodus aufzurufen, drücken und halten Sie länger als 1 Sekunde.

Gehen Sie folgendermaßen vor, um die Einstellung eines Menüelements im Einrichtungsmodus zu ändern:

- 1 Drücken Sie auf oder , um die ausgewählten Menüseiten anzusehen.
- 2 Drücken Sie auf ▲ oder ▼, um zu dem Element zu navigieren, das geändert werden muss.
- 3 Drücken Sie auf (Hz), um zur Einstellung des Elements, das Sie bearbeiten möchten, den **Bearbeitungsmodus** aufzurufen. Im **Bearbeitungsmodus**:
 - i Drücken Sie auf doder , um auszuwählen, welche Ziffer eingestellt werden soll.
 - ii Drücken Sie auf ▲ oder ▼, um den Wert anzupassen.
 - iii Drücken Sie auf , um den Bearbeitungsmodus ohne Speichern der Änderungen zu beenden.
 - iv Drücken Sie auf (Hz), um die vorgenommenen Änderungen zu speichern und den **Bearbeitungsmodus** zu beenden.
- 4 Drücken Sie länger als 1 Sekunde auf , um den Einrichtungsmodus zu beenden.

Standardwerkseinstellungen und verfügbare Einstellugsoptionen

Die folgende Tabelle zeigt die verschiedenen Menüelemente mit ihren entsprechenden Standardeinstellungen und verfügbaren Optionen.

Tabelle 4-1 Standardwerkseinstellungen und verfügbare Einstellungsoptionen für jede Funkiton

Menü	Funktion	Standardwerk seinstellung	Verfügbare Einstellungsoptionen
1	RHOLD	500	 "Halten aktualisieren": Um diese Funktion zu aktivieren, wählen Sie einen Wert im Bereich 100 bis 9.900. Setzen Sie alle Ziffern auf null, um diese Funktion zu deaktivieren (OFF wird angezeigt). Hinweis: Wählen Sie OFF, um den Datenhaltemodus zu aktivieren (manueller Auslöser).
	D-LOG	HAND	Verfügbare Optionen für die Datenprotokollierung: HAND: manuellle Datenprotokollierung. TIME: Intervalldatenprotokollierung (automatisch), wobei das Intervall der LOG TIME-Einstellung entspricht.
	LOG TIME	0001 S	Protokollierungsintervall für die Intervalldatenprotokollierung (TIME) Wählen Sie einen Wert, der im Bereich 0001 bis 9.999 Sekunden liegt.
	dB	dBm	 Verfügbare Optionen: dBm, dBV oder OFF. Wählen Sie OFF, um diese Funktion für den Normalbetrieb zu deaktivieren.
	dBm-R	50 Ω	Referenzimpedanz für dBm-Messung. Wählen Sie einen Wert, der zwischen 1 Ω und 9.999 Ω liegt.

4 Ändern der Standardwerkseinstellung

Tabelle 4-1 Standardwerkseinstellungen und verfügbare Einstellungsoptionen für jede Funkiton (Fortsetzung)

Menü	Funktion	Standardwerk seinstellung	Verfügbare Einstellungsoptionen
	T-TYPE	K	Thermoelement
			Verfügbare Optionen: K-Typ oder J-Typ
	T-UNIT	°C	Temperatureinheit
			Verfügbare Optionen: ° °C/°F: Kombinationsanzeige, °C auf Primäranzeige, °F auf Sekundäranzeige ° °C: Einzelanzeige, nur für °C. ° °F/°C: Kombinationsanzeige, °F auf Primäranzeige, °C auf Sekundäranzeige ° °F: Einzelanzeige, nur für °F
2			Drücken Sie auf (Range), um zwischen °C und °F zu wechseln.
	mA-SCALE	4 mA bis 20 mA	 Prozentuale Skalierung für mA Verfügbare Optionen: 4 – 20 mA, 0 – 20 mA oder OFF. Wählen Sie OFF, um diese Funktion für den Normalbetrieb zu deaktivieren.
	CONTINUITY	SINGLE	Akustischer Durchgangstest
			Verfügbare Optionen: SINGLE, OFF oder TONE.
	MIN-Hz	0,5 Hz	Minimale Messfrequenz
			Verfügbare Optionen: 0,5 Hz, 1 Hz, 2 Hz oder 5 Hz.
3	BEEP	2.400	Signaltonfrequenz Verfügbare Optionen: 4.800 Hz, 2.400 Hz, 1.200 Hz, 600 Hz oder OFF. Wählen Sie OFF, um diese Funktion zu deaktivieren.
	AP0	10 M	Automatische Abschaltfunktion Zur Aktivierung dieser Funktion wählen Sie einen Wert, der zwischen 1 Minute und 99 Minuten liegt. Setzen Sie alle Ziffern auf null, um diese Funktion zu deaktivieren (OFF wird angezeigt).
	BACKLIT	HIGH	Standardmäßige Helligkeitsstärke der Hintergrundbeleuchtung beim Einschalten. Verfügbare Optionen: HIGH, MEDIUM oder LOW.
	MELODY	FACTORY	Aktivieren der Melodie. Verfügbare Optionen: FACTORY oder OFF.
	GREETING	FACTORY	Aktivieren der Begrüßung. Verfügbare Optionen: FACTORY oder OFF.

Tabelle 4-1 Standardwerkseinstellungen und verfügbare Einstellungsoptionen für jede Funkiton (Fortsetzung)

Menü	Funktion	Standardwerk seinstellung	Verfügbare Einstellungsoptionen	
4	BAUD	9.600	Baudrate für die Remotekommunikation mit einem PC (Fernsteuerung). Verfügbare Optionen: 2.400, 4.800, 9.600 und 19.200.	
	DATA BIT	8	Datenbitlänge für die Remotekommunikation mit einem PC. Verfügbare Optionen: 8 Bits oder 7 Bits (Stoppbit ist immer 1 Bit).	
	PARITY	NONE	Paritätsbit für die Remotekommunikation mit einem PC. Verfügbare Optionen: NONE, ODD oder EVEN.	
	ECH0	OFF	Rückgabe von Zeichen an den PC bei der Remotekommunikation. Verfügbare Optionen: ON oder OFF.	
	PRINT	OFF	Ausdrucken gemessener Daten auf einem PC bei der Remotekommunikation. Verfügbare Optionen: ON oder OFF.	
	REVISION	NN.NN	Versionsnummer. Die Bearbeitung ist deaktiviert.	
	S/N	NNNNNNN	Die letzten 8 Ziffern der Seriennummer werden angezeigt. Die Bearbeitung ist deaktiviert.	
	V-ALERT	OFF	Akustisches Warnsignal für die Spannungsmessung.	
5			Zur Aktivierung dieser Funktion wählen Sie einen Überspannunswert aus, der zwischen 1 V und 1.010 V liegt.	
			Setzen Sie alle Ziffern auf null, um diese Funktion zu deaktivieren (OFF wird angezeigt).	
	M-INITIAL	FACTORY	Anfangsmessfunktionen Verfügbare Optionen: FACTORY oder USER.	
	SMOOTH	NORMAL	Aktualisierungsgeschwindigkeit für Messwerte auf der Primäranzeige. Verfügbare Optionen: FAST, NORMAL oder SLOW.	
6	DEFAULT	NO	Wählen Sie YES und drücken Sie länger als 1 Sekunde auf (Hz), um das Multimeter auf die Standardwerkseinstellungen zurückzusetzen.	
	BATTERY	7.2 V	Für das Multimeter verwendeter Batterietyp Verfügbare Optionen: 7,2 V oder 8,4 V.	
	DC-Filter	OFF	Filter für DC-Spannungs- oder DC-Stromstärkenmessung. Verfügbare Optionen: OFF oder ON.	

4 Ändern der Standardwerkseinstellung

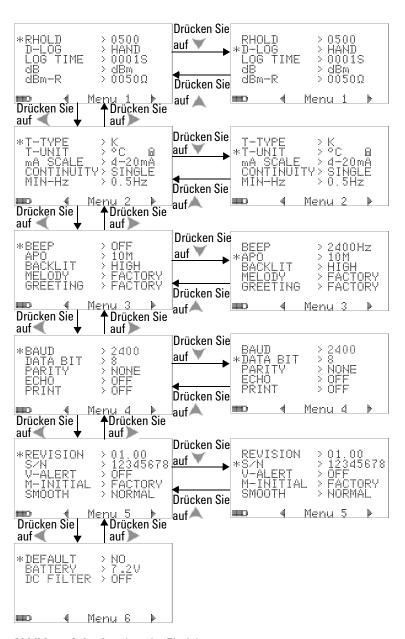


Abbildung 4-1 Anzeigen im Einrichtungsmenü

Einstellen von Datenhaltemodus/Modus "Halten aktualisieren"

- 1 Stellen Sie das Menüelement auf RHOLD ein, um den Datenhaltemodus zu aktivieren (manueller Auslöser durch Taste oder Bus per Fernsteuerung).
- 2 Wählen Sie für die Festlegung des Menüelements RHOLD einen Wert im Bereich 100 bis 9.900, um den Modus "Halten aktualisieren" zu aktivieren (automatischer Auslöser). Sobald die Abweichung der Messwerte diesen Wert (den Abweichungszähler) überschreitet, ist der Modus "Halten aktualisieren" zum Auslösen und Halten eines neuen Werts bereit.

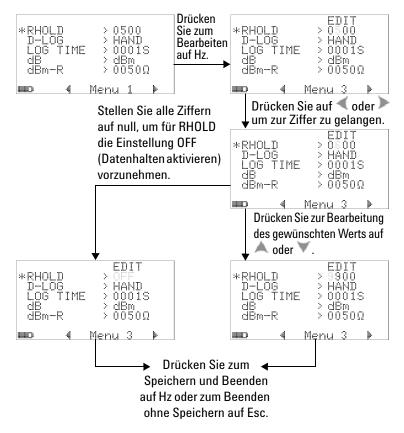


Abbildung 4-2 Datenhaltemodus/Modus "Halten aktualisieren"

Einstellen des Datenprotokollierungsmodus

1 Wählen Sie die Einstellung HAND, um die manuelle Datenprotokollierung (HAND) zu aktivieren oder TIME, um die Intervalldatenprotokollierung (TIME) zu aktivieren. Siehe unten stehende Abbildung 4-3.

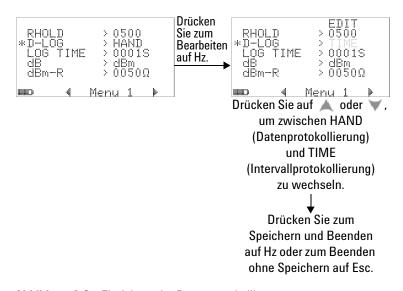
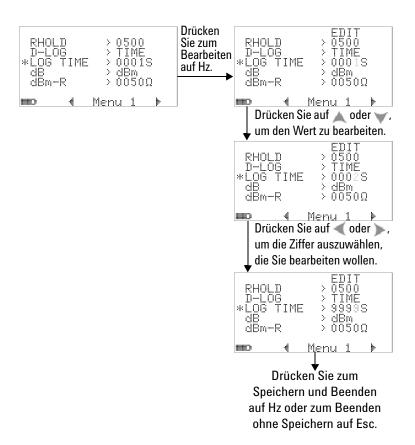



Abbildung 4-3 Einrichten der Datenprotokollierung

2 Für die Intervalldatenprotokollierung (TIME) wählen Sie für LOG TIME einen Bereich zwischen 0001 und 9.999 Sekunden, um das Datenprotokollierungsintervall festzulegen.

Abbildung 4-4 Einstellen der Protokollierdauer bei der Intervallprotokollierung (TIME)

Einrichten der dB-Messung

Die Dezibeleinheit kann durch die Einstellung OFF deaktiviert werden. Die verfügbaren Optionen sind dBm, dBV und OFF. Bei einer dBm-Messung kann die Referenzimpedanz durch das Menüelement "dBm-R" festgelegt werden.

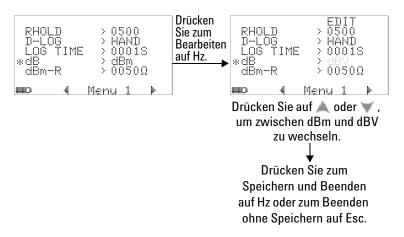


Abbildung 4-5 Einrichten der Dezibelmessung

Einstellen der Referenzimpedanz für dBm-Messung

Die Referenzimpedanz für die dBm-Messung kann auf jeden beliebigen Wert im Bereich zwischen 1 und 9.999 Ω festgelegt werden. Der Standardwert ist 50 Ω

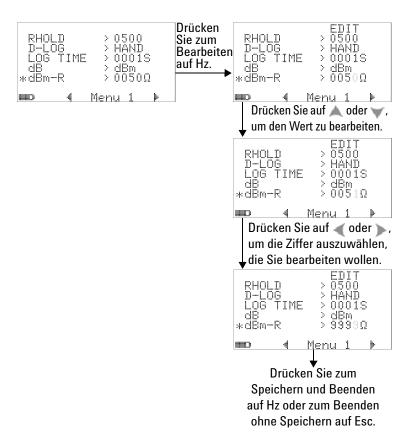
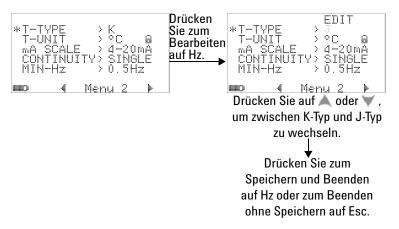



Abbildung 4-6 Einstellen der Impedanz für die dBm-Einheit

Einstellen von Thermoelementtypen

Für die Auswahl des Thermoelementsensors stehen J- und K-Typen zur Auswahl. Der Standardtyp ist der K-Typ.

Abbildung 4-7 Einrichten des Thermoelementtyps

Einstellen der Temperatureinheit

Die Temperatureinheiteneinstellung beim Einschalten

Vier Kombinationsanzeigen sind verfügbar:

- 1 Nur Celsius: °C-Einzelanzeige.
- **2** Celsius/Fahrenheit: °C/°F-Kombinationsanzeige; °C auf der Primäranzeige und °F auf der Sekundäranzeige.
- 3 Nur Fahrenheit: °F-Einzelanzeige.
- **4** Fahrenheit/Celsius: °F/°C-Kombinationsanzeige; °F auf der Primäranzeige und °C auf der Sekundäranzeige.

HINWEIS

Die Temperatureinheiteneinstellung beim Einschalten ist standardmäßig gesperrt, sodass die Bearbeitung der Temperatureinheiten bis zur Freigabe nicht zulässig ist.

Drücken Sie iänger als 1 Sekunde, um die Einstellung der Temperatureinheit zu sperren.

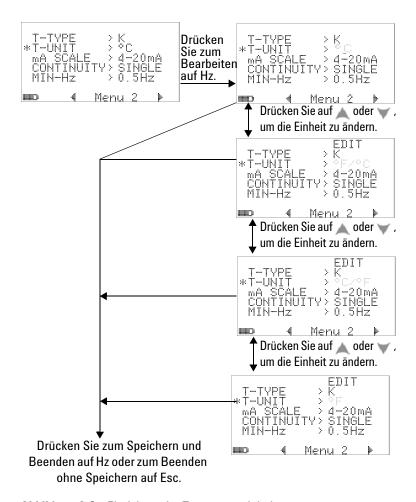


Abbildung 4-8 Einrichten der Temperatureinheit

Einstellen der Prozentskalenausgabe

Diese Einstellung konvertiert die DC-Stromstärkenanzeige in die Prozentskalenausgabe: 0% bis 100% basierend auf einem Bereich von 4 mA bis 20 mA oder 0 mA bis 20 mA. Eine 25%-Ausgabe steht zum Beispiel für eine DC-Stromstärke von 8 mA für den Bereich von 4 mA bis 20 mA oder eine DC-Stromstärke von 5 mA für den Bereich von 0 mA bis 20 mA. Zur Deaktivierung dieser Funktion wählen Sie die Einstellung OFF.

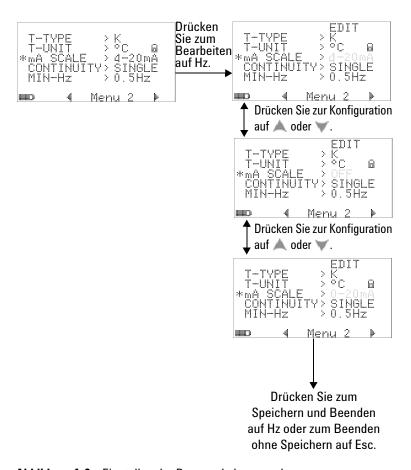


Abbildung 4-9 Einstellen der Prozentskalenausgabe

Einstellen des Signaltons für den Durchgangstest

Diese Einstellung legt den Signalton fest, der für den Durchgangstest verwendet wird. Wählen Sie "SINGLE" für einen Einzelfrequenzton, "OFF" zum Ausschalten des Tons oder "TONE" für eine kontinuierliche Folge von Tönen mit variierenden Frequenzen.

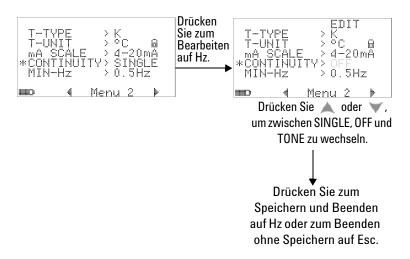


Abbildung 4-10 Auswählen des Signaltons für den Durchgangstest

Einstellen der Mindestmessfrequenz

Die Einstellung für die minimale messbare Frequenz beeinflusst die Messraten für Frequenz, Arbeitszyklus und Impulsbreite. Die typische Messrate, wie in der Spezifikation definiert, basiert auf einer minimal messbaren Frequenz von 1 Hz.

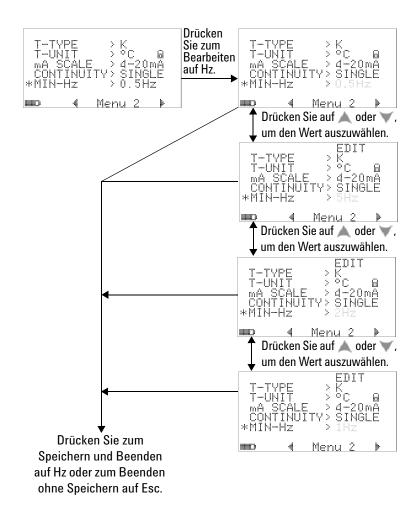


Abbildung 4-11 Einrichten der Mindestfrequenz

Einstellen der Signaltonfrequenz

Die Signaltonfrequenz kann auf 4800 Hz, 2400 Hz, 1200 Hz oder 600 Hz eingestellt werden. "OFF" deaktiviert den Signalton.

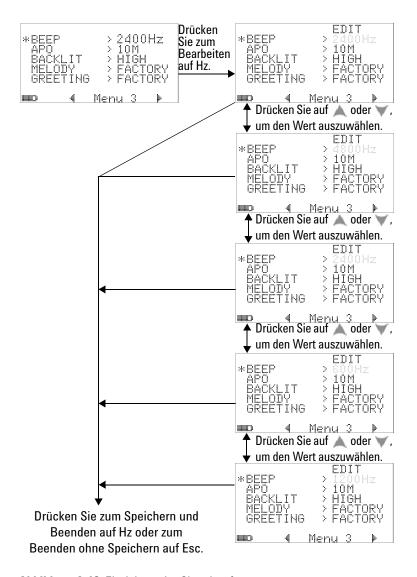


Abbildung 4-12 Einrichten der Signaltonfrequenz

Einstellen des automatischen Abschaltmodus

- Stellen Sie den Timer auf einen beliebigen Wert im Bereich von 1 bis 99 Minuten ein, um die automatische Abschaltfunktion (Auto Power Off, APO) einzustellen.
- Das Multimeter schaltet sich nach der festgelegten Dauer automatisch aus (mit APO aktiviert), wenn keiner der folgenden Punkte zutrifft:
 - Eine beliebige Taste wird gedrückt.
 - · Eine Messfunktion wurde geändert.
 - Die dynamische Aufzeichnung ist eingestellt.
 - 1-ms-Spitzenwert ist ausgewählt.
 - APO ist im Einrichtungsmodus deaktiviert.
- Zur Aktivierung des Multimeters nach dem automatischen Ausschalten, drücken Sie einfach auf eine beliebige Taste oder ändern Sie die Position des Drehreglers.
- Wählen Sie OFF, um APO zu deaktivieren. Wenn APO deaktiviert ist, wird die Meldeanzeige deaktiviert. Das Multimeter bleibt eingeschaltet, bis Sie den Drehregler manuell auf die Position OFF drehen.

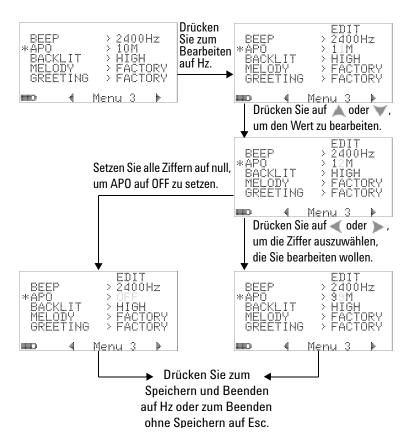


Abbildung 4-13 Einrichten des automatischen Energiesparmodus

Einstellen der Helligkeitsstärke der Hintergrundbeleuchtung bei Einschalten

Die Melodie, die beim Einschalten des Multimeters gespielt wird, kann auf FACTORY oder OFF eingestellt werden.

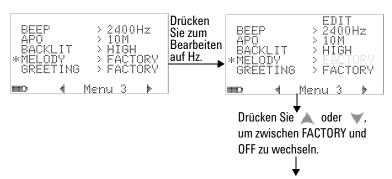


Abbildung 4-14 Einstellen der Hintergrundbeleuchtung beim Einschalten

Während Sie das Multimeter verwenden, können Sie die Helligkeit jederzeit einstellen, indem Sie auf arücken.

Einstellen der Einschaltmelodie

Die Melodie, die beim Einschalten des Multimeters gespielt wird, kann auf FACTORY oder OFF eingestellt werden.

Drücken Sie zum Speichern und Beenden auf Hz oder zum Beenden ohne Speichern auf Esc.

Abbildung 4-15 Einstellen der Melodie beim Einschalten

Einstellen des Begrüßungsbildschirms beim Einschalten

Der Begrüßungsbildschirm, der beim Einschalten des Multimeters angezeigt wird, kann auf FACTORY oder OFF eingestellt werden.

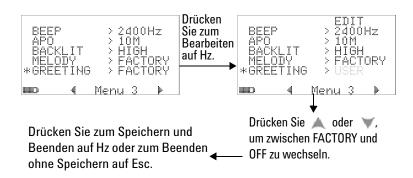


Abbildung 4-16 Einstellen der Begrüßung beim Einschalten

Einstellen der Baudrate

Die Baudrate, die bei der Remotekommunikation mit einem PC verwendet wird, kann auf 2.400, 4.800, 9.600 oder 19.200 Bits/Sek. gesetzt werden.

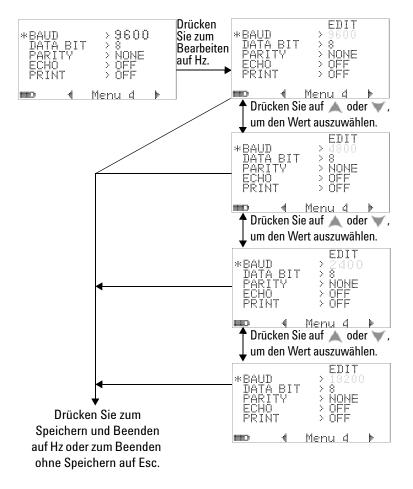


Abbildung 4-17 Einstellen der Baudrate für die Fernsteuerung

Einstellen von Datenbits

Für die Anzahl an Datenbits (Datenbreite) für die Remotekommunikation mit einem PC kann zwischen 8 oder 7 Bits gewählt werden. Die Anzahl des Stoppbits ist immer 1 und kann nicht geändert werden.

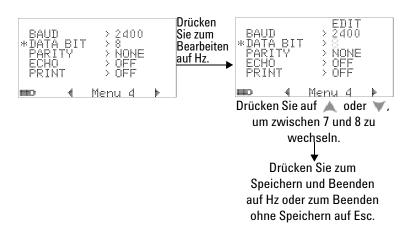


Abbildung 4-18 Einrichten des Datenbits für die Fernsteuerung

Einstellen der Paritätsprüfung

Die Paritätsprüfung für die Remotekommunikation mit einem PC kann entweder auf NONE, ODD oder EVEN gesetzt werden.

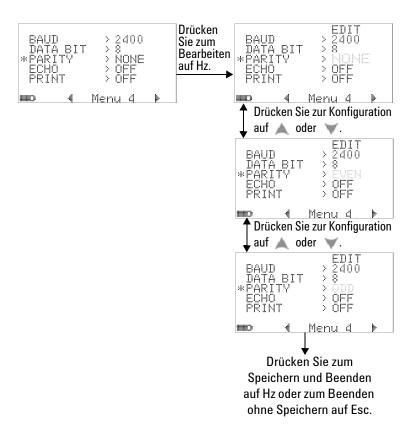


Abbildung 4-19 Einstellen der Paritätsprüfung für die Fernsteuerung

Einstellen des Echomodus

- Wenn für den Echomodus "ON" gewählt ist, können die übermittelten Daten auf dem PC bei der Remotekommunikation wiederholt werden.
- Dies ist bei der Entwicklung eines PC-Programms mit SCPI-Befehlen hilfreich. Während des Normalbetriebs wird die Deaktivierung dieser Funktion empfohlen.

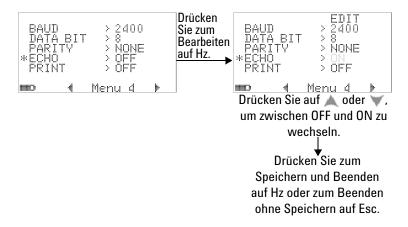


Abbildung 4-20 Einstellen des Echomodus für die Fernsteuerung

Einstellen des Druckmodus

Wenn für den Druckmodus "ON" gewählt ist, können gemessene Daten nach Abschluss eines Messzyklus auf einem PC gedruckt werden, der mit dem Multimeter über eine Remoteschnittstelle verbunden ist.

In diesem Modus sendet das Multimeter ständig die aktuellen Daten an den Host, akzeptiert jedoch keine Befehle vom Host.

Die Meldeanzeige " blinkt während der Druckoperation.

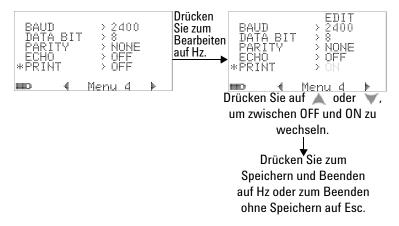


Abbildung 4-21 Einstellen des Druckmodus für die Fernsteuerung

Version

Die Versionsnummer der Firmware wird angegeben.

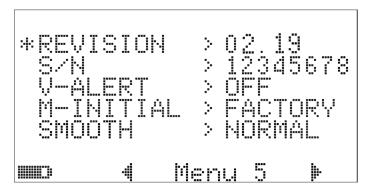


Abbildung 4-22 Versionsnummer

Seriennummer

Die letzten 8 Ziffern der Seriennummer werden angezeigt.

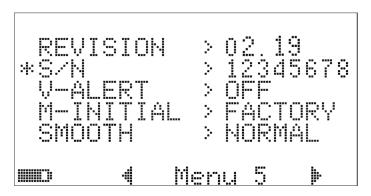


Abbildung 4-23 Seriennummer

Spannungswarnung

Zur Aktivierung eines Warnsignals bei Überspannung wählen Sie einen Überspannungswert im Bereich 1 V bis 1.010 V.

Setzen Sie alle Ziffern auf 0 (OFF), um diese Funktion zu deaktivieren.

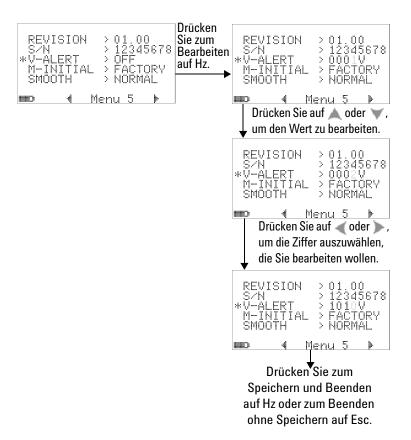


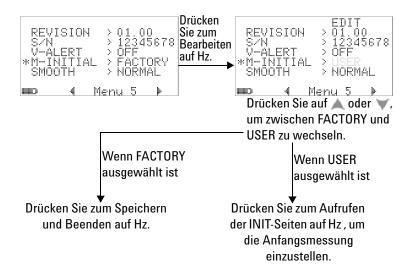
Abbildung 4-24 Einstellen der Spannungswarnmeldung

M-initial

Sie können für die Anfangsmessfunktionen zwischen FACTORY oder USER wählen. Die Anfangsmessfunktionen und der -bereich können entsprechend der nachstehenden Tabelle 4-2 festgelegt werden.

Tabelle 4-2 Verfügbare Einstellungen für M-initial

Funktionsposition		Funktionseinstellung	Bereichseinstellung
F1	~v	AC V	Automatische oder manuelle Bereiche
F2	≂v	DC V, AC V, AC+DC V	Automatische oder manuelle Bereiche
F3	∼ mV	DC mV, AC mV, AC+DC mV	Automatische oder manuelle Bereiche
F4	nS⊸)) Ω	Ohm, nS	Automatische oder manuelle Bereiche
F5	Hz > 	Diode, Frequenzzähler	Keine Bereichseinstellung
F6	→⊢	Temperatur, Kapazität	Automatische oder manuelle Bereiche
F7	μ Α ~	DC μΑ, ΑC μΑ, ΑC+DC μΑ	Automatische oder manuelle Bereiche
F8	mA·A 💳	DC mA, AC mA, AC+DC mA	Automatische oder manuelle Bereiche
F8A	mA·A 💳	DC A, AC A, AC+DC A	Automatische oder manuelle Bereiche
F9	JULE % OUT ms	29 verschiedene Frequenzen	Arbeitszyklus = (N/256) × 100% Impulsbreite = (N/256) × (1/Frequenz)


Jeder Position des Drehreglers ist eine Standardmessfunktion und ein Standardmessbereich zugewiesen.

Wenn Sie den Drehregler zum Beispiel auf die Position stellen, ist die Anfangsmessfunktion gemäß den Standardwerkseinstellungen die Diodenmessung. Um die erforderliche Frequenzzählerfunktion zu wählen, drücken Sie

4 Ändern der Standardwerkseinstellung

Wenn Sie den Drehregler auf **V** stellen, ist der Anfangsmessbereich gemäß den Standardwerkseinstellungen "Auto". Zur Auswahl eines anderen Bereichs drücken Sie auf (Range).

Wenn Sie andere Anfangsmessfunktionen bevorzugen, ändern Sie die M-INITIAL-Einstellung auf USER und drücken Sie auf Hz. Das Multimeter ruft die **INIT**-Seiten auf. Siehe hierzu Abbildung 4-25.

Abbildung 4-25 Einstellen der Anfangsmessfunktionen

Auf den **INIT**-Seiten können Sie die bevorzugten Messfunktionen definieren. Siehe hierzu Abbildung 4-26.

Drücken Sie auf oder , um zwischen den beiden INIT-Seiten zu navigieren. Drücken Sie auf oder , um auszuwählen, welche Anfangsfunktion Sie ändern möchten.

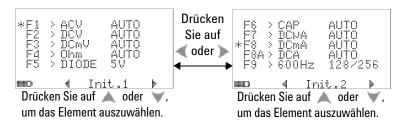
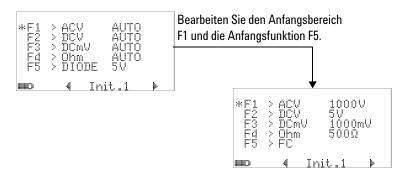


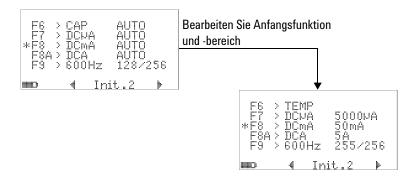
Abbildung 4-26 Navigieren zwischen den Anfangsfunktionsseiten

Drücken Sie auf (Hz), um den Bearbeitungsmodus aufzurufen.

Drücken Sie im **Bearbeitungsmodus** auf oder , um den Anfangsmessbereich (Standard) der ausgewählten Funktion auszuwählen. Abbildung 4-27 im Folgenden zeigt, dass der Anfangsbereich der AC-Spannungsmessfunktion auf Position F1 auf 1.000 V geändert wurde (Standard war "Auto").

Drücken Sie auf \bigwedge oder \bigvee , um die Anfangsmessfunktion einer ausgewählten Drehreglerposition zu ändern. Abbildung 4-27 zeigt beispielsweise, dass die Anfangsmessfunktion der Position F5 von DIODE auf FC (Frequenzzähler) geändert wurde.



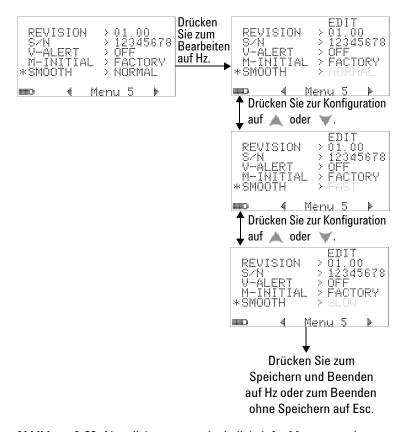

Abbildung 4-27 Bearbeiten von Anfangsmessfunktion/-bereich

Ein weiteres Beispiel wird in Abbildung 4-28 veranschaulicht:

• Die Standardfunktion F6 wurde von Kapazitätsmessung in Temperaturmessung geändert.

4 Ändern der Standardwerkseinstellung

- Der F7-Standardmessbereich für DC μA wurde von Auto in 5.000 μA geändert.
- Der F8-Standardmessbereich für DC mA wurde von "Auto" in 50 mA geändert.
- Der F8A-Standardmessbereich für DC A wurde von "Auto" in 5 A geändert.
- Die F9-Standardausgabewerte für die Impulsbreite und den Arbeitszyklus wurden jeweils vom 128. Schritt (0,8333 ms für Impulsbreite und 50,000% für Arbeitszyklus) auf den 255. Schritt (1,6601 ms für Impulsbreite und 99,609%) geändert.


Abbildung 4-28 Bearbeiten von Anfangsmessfunktion/-bereich und Anfangsausgabewerten

Drücken Sie auf (Hz), wenn Sie die gewünschten Änderungen vorgenommen haben. Drücken Sie auf (Jum), um den Bearbeitungsmodus zu verlassen.

Wenn Sie das Multimeter auf die Standardwerkseinstellungen zurücksetzen (siehe "Rücksetzen auf die Standardwerkseinstellungen" auf Seite 118), wird Ihre Einstellung für M-INITIAL ebenfalls auf die Standardeinstellung zurückgesetzt.

Aktualisierungsgeschwindigkeit der Glättung

Der Glättungsmodus (Optionen FAST, NORMAL und SLOW) wird zum Glätten der Aktualisierungsgeschwindigkeit der Messwerte verwendet, um die Beeinträchtigung durch unerwartetes Rauschen zu senken und um Sie dabei zu unterstützen, einen stabilen Messwert zu erhalten. Dies gilt für alle Messfunktionen mit Ausnahme des Kapazitäts- und Frequenzzählers (einschließlich Arbeitszyklus- und Impulsbreitenmessungen). Die Standardeinstellung ist NORMAL.

Abbildung 4-29 Aktualisierungsgeschwindigkeit für Messwerte der Primäranzeige

Rücksetzen auf die Standardwerkseinstellungen

- Wählen Sie YES, drücken Sie anschließend länger als 1 Sekunde auf (Hz), um die Einstellungen auf die Standardwerkseinstellungen zurückzusetzen (alle mit Ausnahme der Temperatureinstellung).
- Nach der Rücksetzung folgt automatisch der Wechsel vom Menüelement "Reset" zur Menüseite m1.

Abbildung 4-30 Zurücksetzen auf Standardwerkseinstellungen

Einstellen des Batterietyps

Für das Multimeter kann ein Batterietyp von 7,2 V oder 8,4 V eingestellt werden.

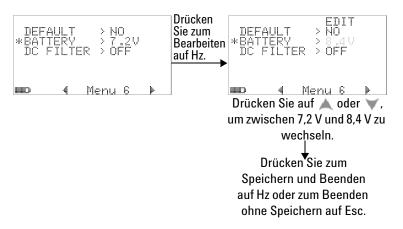
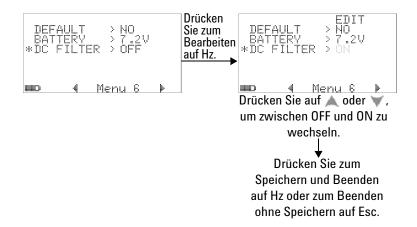



Abbildung 4-31 Batterietypauswahl

Einstellen des DC-Filters

Diese Einstellung wird im DC-Messpfad zur AC-Signal-Filterung verwendet. Der DC-Filter ist standardmäßig auf "OFF" gesetzt. Um diese Funktion zu aktivieren, setzen Sie diese auf "ON".

Abbildung 4-32 DC-Filter

HINWEIS

- Wenn der DC-Filter aktiviert ist, kann die Messgeschwindigkeit während der DC-Spannungsmessung abfallen.
- Während der DC- oder Hz-Messung (auf der Primär- oder Sekundäranzeige) wird der DC-Filter automatisch deaktiviert.

Einleitung 122
Allgemeine Wartung 122
Batterieaustausch 123
Hinweise zur Lagerung 125
Laden des Akkus 126
Sicherungsprüfverfahren 133
Austausch von Sicherungen 135
Fehlerbehebung 137
Ersatzteile 139
So bestellen Sie Ersatzteile 139

In diesem Kapitel erfahren Sie, wie eventuell auftretende Fehlfunktionen des U1253B True RMS OLED-Multimeters behoben werden.

Einleitung

VORSICHT

Reparatur- oder Servicemaßnahmen, die in diesem Handbuch nicht erwähnt werden, sind nur von qualifiziertem Personal durchführbar.

Allgemeine Wartung

WARNUNG

Stellen Sie vor jeder Messung sicher, dass Sie die richtigen Anschlüsse verwenden. Um eine Beschädigung des Geräts zu vermeiden, überschreiten Sie nicht die Eingangsbeschränkung.

Schmutz oder Feuchtigkeit in den Anschlüssen kann die Messwerte verzerren. Gehen Sie zur Reinigung wie folgt vor:

- 1 Schalten Sie das Multimeter aus und entfernen Sie die Testleitungen.
- 2 Drehen Sie das Multimeter um, und schütteln Sie den Schmutz heraus, der sich eventuell in den Anschlüssen angesammelt hat.
- 3 Wischen Sie das Gehäuse mit einem feuchten Tuch und einem milden Reinigungsmittel ab – verwenden Sie keine Scheuer- oder Lösungsmittel. Reinigen Sie die Kontakte jedes Anschlusses mit einem sauberen, mit Alkohol befeuchteten Wattetupfer.

Batterieaustausch

Dieses Multimeter wird mit einem aufladbaren Ni-MH-Akku mit 9 V (7,2 V Nennspannung) oder aufladbaren Ni-MH-Akku mit 9 V (8,4 V Nennspannung) betrieben. Verwenden Sie nur den entsprechenden Typ (siehe nachfolgende Abbildung 5-1). Alternativ können Sie eine 9-V-Alkalibatterie (ANSI/NEDA 1604A oder IEC 6LR61) oder eine 9 V-Zink-Kohle-Batterie (ANSI/NEDA 1604D oder IEC6F22) verwenden, um das U1253B zu betreiben.

Um sicherzustellen, dass das Multimeter gemäß den Spezifikationen betrieben wird, empfiehlt sich der Austausch der Batterie, sobald durch Leuchten der Anzeige auf einen niedrigen Batterieladestatus hingewiesen wird. Wenn Ihr Multimeter mit einer wiederaufladbaren Batterie ausgestattet ist, beziehen Sie sich auf "Laden des Akkus" auf Seite 126. Der Batterieaustausch erfolgt wie folgt:

HINWEIS

Das U1253B wird mit einem aufladbaren Ni-MH-Akku mit 9 V (7,2 V Nennspannung) geliefert.

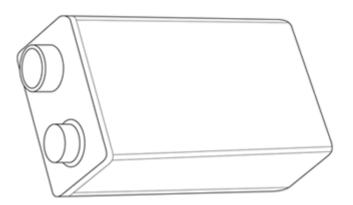
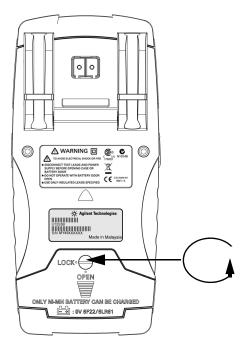



Abbildung 5-1 Rechteckige Batterie mit 9 V

5 Wartung

1 Drehen Sie am hinteren Bedienfeld die Schraube der Batteriefachabdeckung von der Position LOCK auf OPEN (entgegen dem Uhrzeigersinn).

Abbildung 5-2 Hinteres Bedienfeld von Agilent U1253B True RMS OLED-Multimeter

- 2 Schieben Sie die Batteriefachabdeckung nach unten.
- **3** Heben Sie die Batteriefachabdeckung ab.
- 4 Tauschen Sie die Batterie aus.
- **5** Gehen Sie umgekehrt vor, um die Batteriefachabdeckung wieder anzubringen.

HINWEIS

Liste der kompatiblen Batterien für das Agilent U1253B:

- 9-V-Alkali-Einwegbatterie (ANSI/NEDA 1604A oder IEC 6LR61)
- 9-V-Zink-Kohle-Einwegbatterie (ANSI/NEDA 1604D oder IEC6F22)
- Aufladbarer Ni-MH-Akku mit 7,2 V und 300 mAH, Größe 9V
- Aufladbarer Ni-MH-Akku mit 8,4 V und 300 mAH, Größe 9V

Hinweise zur Lagerung

VORSICHT

So vermeiden Sie Beschädigungen durch auslaufende Batterien:

- · Entfernen Sie verbrauchte Batterien grundsätzlich sofort.
- Es wird empfohlen, die Batterie aus dem Multimeter zu nehmen und diese separat zu lagern, wenn das Gerät längere Zeit nicht verwendet wird.

Nach dem ersten Ladevorgang sollte der Akku regelmäßig vollständig aufgeladen werden, auch wenn diese nicht verwendet wird. Anderenfalls besteht die Möglichkeit, dass der aufladbare Ni-MH-Akku nach einiger Zeit ausläuft.

HINWEIS

Die Leistungsfähigkeit des aufladbaren Akkus kann im Laufe der Zeit abnehmen.

Laden des Akkus

WARNUNG

Entladen Sie die wiederaufladbare Batterie nicht durch Kurzschluss oder Polaritätsumkehrung. Laden Sie nur wiederaufladbare Batterien, keine nicht aufladbaren Batterien. Drehen Sie den Drehregler nicht, wenn die aufladbare Batterie gerade aufgeladen wird.

VORSICHT

- Führen Sie den Ladevorgang nur mit einem aufladbaren Ni-MH-Akku mit 9 V (7,2 V Nennspannung) oder aufladbaren Ni-MH-Akku mit 9 V (8,4 V Nennspannung) durch.
- Trennen Sie die Testleitungen w\u00e4hrend der Akkuladezeit von allen Anschl\u00fcssen.
- Stellen Sie das ordnungsgemäße Einlegen der Batterie in das Multimeter sicher und achten Sie auf die richtige Polarität.

HINWEIS

Für das Batterieladegerät dürfen die Schwankungen der Netzspannung ±10% nicht überschreiten.

Ein neuer Akku ist nicht geladen und muss vor der Verwendung aufgeladen werden. Vor der ersten Verwendung des Akkus (oder nach längerer Lagerung des Geräts) muss dieser möglicherweise drei- bis viermal geladen und wieder entladen werden, bis die maximale Kapazität erreicht wird. Zum Entladen betreiben Sie das Multimeter einfach mit dem Akku, bis es sich ausschaltet oder die Warnung zum niedrigen Akkuladestand angezeigt wird.

Als Energiequelle für dieses Multimeter dient eine 7,2-V- oder 8,4-V-NiMH-Batterie. Es wird empfohlen, dass Sie den angegebenen 24-Volt-DC-Adapter, der als Zubehör im Lieferumfang enthalten ist, verwenden, um die aufladbare Batterie aufzuladen. Drehen Sie niemals den Drehregler während des Ladens, da eine DC-Spannung von 24 V an den Ladeanschlüssen anliegt. Laden Sie die aufladbare Batterie wie folgt:

- 1 Entfernen Sie die Testleitungen vom Multimeter.
- 2 Drehen Sie den Drehregler in die Position ⊖ CFF. ☐ CHG.
- 3 Stecken Sie den DC-Adapter in eine Steckdose.
- 4 Verbinden Sie den roten (+) und schwarzen (-) Bananenstecker (4 mm Stecker) des DC-Adapters entsprechend mit den Anschlüssen ET CHG und COM. Achten Sie auf richtige Polarität.

Der DC-Adapter kann durch ein DC-Netzteil mit DC 24 V und einem Überstromgrenzwert von 0,5 A ausgewechselt werden.

Auf der Anzeige wird ein 10-Sekunden-Countdown-Timer für den Start des Selbsttests angezeigt. Das Multimeter gibt kurze Einzelsignaltöne aus, um Sie an das Auswechseln der Batterie zu erinnern. Drücken Sie auf wurden, um mit dem Wechsel der Batterie zu beginnen, oder das Multimeter beginnt nach 10 Sekunden automatisch mit dem Ladevorgang. Laden Sie die Batterie nicht, wenn die Kapazität über 90% liegt.

5 Wartung

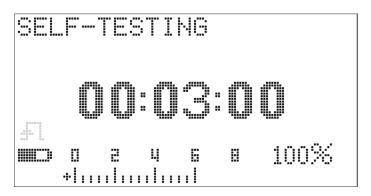


Abbildung 5-3 Zeitanzeige beim Selbsttest

Tabelle 5-1 Batteriespannung und entsprechende Prozentangabe des Ladevorgangs im Standby- und Auflademodus.

Bedingung	Batteriespannung	Prozentsatz proportional
Erhaltung	6,0 V bis 8,2 V	0% bis 100%
Wird aufgeladen	7,2 V bis 10,0 V	0% bis 100%

Nach Betätigung der Taste oder im Fall eines Neustarts, führt das Multimeter einen Selbsttest durch, um zu überprüfen, ob es sich bei der Batterie im Multimeter um eine aufladbare Batterie handelt. Der Selbsttest dauert etwa 2-3 Minuten. Betätigen Sie während des Selbsttests keine Tasten. Sofern ein Fehler auftritt, zeigt das Multimeter, wie in Tabelle 5-2 auf Seite 129 dargestellt, Fehlermeldungen an.

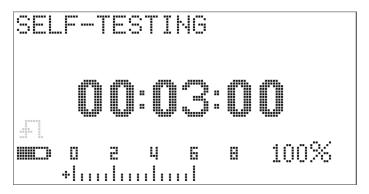


Abbildung 5-4 Durchführen des Selbsttests

Tabelle 5-2 Fehlermeldungen

Fehler	Fehlermeldung
OVER LIMIT 1 Keine Batterie eingesetzt. 2 Falsche Batterie	OVER LIMIT
3 Batterie ist vollständig aufgeladen.	00:00:19
	### ### 0 2 4 6 8 10096 *
CHARGE ERROR 1 Beim Laden des Akkus mit mehr als 12 V oder weniger als 5 V	CHARGE ERROR
2 Nach 3 Minuten wird Ladefehler angezeigt, wenn Akkuspannung nicht ansteigt	00:02:59
	*III

HINWEIS

- Wenn die Meldung OVER LIMIT angezeigt wird und sich eine Batterie im Multimeter befindet, sollten Sie die Batterie nicht aufladen.
- Wenn die Meldung CHARGE ERROR angezeigt wird, sollten Sie überprüfen, ob es sich bei der Batterie um den spezifizierten Typ handelt. Den richtigen Batterietyp finden Sie in der "Liste der kompatiblen Batterien für das Agilent U1253B:" auf Seite 125. Bitte stellen Sie sicher, dass die Batterie den Spezifikationen entspricht, bevor Sie ihn erneut laden. Wenn Sie eine falsche Batterie durch eine aufladbare Batterie des richtigen Typs ausgetauscht haben, drücken Sie auf , um den Selbsttest erneut auszuführen. Nehmen Sie erneut einen Austausch der Batterie vor, wenn die Meldung CHARGE ERROR erneut angezeigt wird.

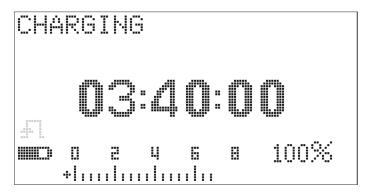


Abbildung 5-5 Lademodus

7 Nach erfolgreichem Selbsttest wird der intelligente Lademodus gestartet. Die Ladezeit ist auf 220 Minuten begrenzt. Dadurch wird sichergestellt, dass die Batterie nicht länger als 220 Minuten geladen wird. Auf der Anzeige wird die Ladezeit heruntergezählt. Während des Ladevorgangs können keine Tasten betätigt werden. Zur Vermeidung der Überladung der Batterie kann das Laden während des Ladeprozesses durch eine Fehlermeldung unterbrochen werden.

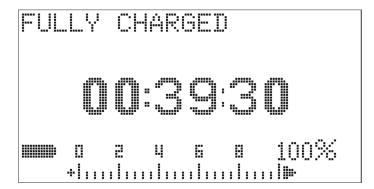


Abbildung 5-6 Vollständig geladen und im Erhaltungszustand

- **8** Wenn der Ladevorgang beendet ist, wird die Meldung **FULLY CHARGED** angezeigt. Erhaltungsladestrom wird gezogen, um die Batteriekapazität zu erhalten.
- **9** Entfernen Sie den DC-Adapter, wenn die Batterie vollständig geladen wurde.

VORSICHT

Drehen Sie den Drehregler nicht, bevor Sie den Adapter von den Anschlüssen entfernt haben.

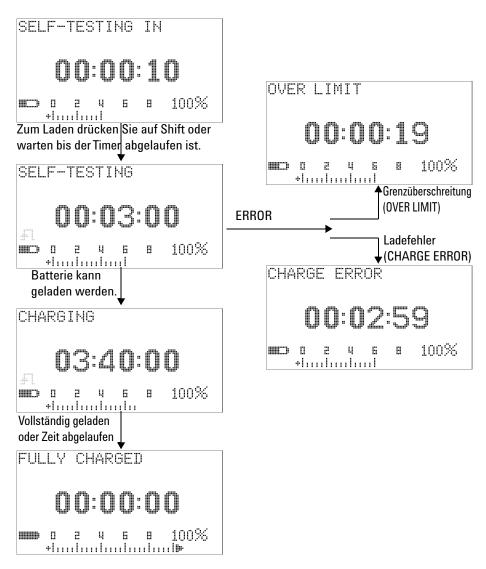


Abbildung 5-7 Batterieladeverfahren

Sicherungsprüfverfahren

Vor der Verwendung des Multimeters sollten Sie seine Sicherungen prüfen. Testen Sie die Sicherungen des Multimeters gemäß der nachstehenden Anweisungen. Die entsprechenden Positionen der Sicherungen 1 und 2 können Sie Abbildung 5-9 entnehmen.

- 1 Stellen Sie den Drehregler auf \bigcap_{Ω}^{1} .
- 2 Schließen Sie die rote Testleitung an den Eingangsanschluss

 → → →

 ∩ · T an.

 V·mV

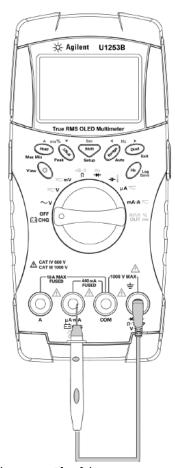


Abbildung 5-8 Sicherungsprüfverfahren

5 Wartung

3 Um Sicherung 1 zu testen, halten Sie die Spitze der

Testleitung an die rechte Hälfte des Eingangsanschlusses $\mu \mathbf{A} \cdot \mathbf{m} \mathbf{A}$

EICHG . Achten Sie darauf, dass die Spitze der Testleitung das

Metall innerhalb des Eingangsanschlusses berührt, wie in

Abbildung 5-8 gezeigt.

- 4 Um Sicherung 2 zu testen, halten Sie die Spitze der Testleitung an die rechte Hälfte des Eingangsanschlusses A. Achten Sie darauf, dass die Spitze der Testleitung das Metall innerhalb des Eingangsanschlusses berührt.
- **5** Beachten Sie die Messwertanzeige am Gerät. Die möglichen angezeigten Messwerte finden Sie in Tabelle 5-3.
- **6** Ersetzen Sie die Sicherung, wenn **0L** angezeigt wird.

Tabelle 5-3 U1253B Messwertanzeige für Sicherungsprüfung

Stromeingangsanschluss	Sicherung	Sicherungsbewertung	Sicherung OK (annähernd)	Sicherung ersetzen	
Stromeniyanysanscinuss	Sicherung	Olonorangsbewertung	Angezeigte Messwerte		
μ A·mA	1	440 mA/1000 V	6.2 MΩ	0L	
Α	2	11 A/1000 V	0.06 Ω	0L	

Austausch von Sicherungen

HINWEIS

In diesem Handbuch wird nur der Sicherungsaustausch beschrieben, jedoch nicht die Sicherungsaustauschkennzeichnung.

Entfernen Sie durchgebrannte Sicherungen im Multimeter gemäß den folgenden Verfahren:

- 1 Schallten Sie das Multimeter aus und entfernen Sie die Testleitungen. Stellen Sie sicher, das der Ladeadapter entfernt wird, wenn dieser am Multimeter angeschlossen ist.
- 2 Tragen Sie saubere und trockene Handschuhe und vermeiden Sie die Berührung jeglicher Komponenten mit Ausnahme der Sicherung(en) und Plastikteile. Nach dem Austausch einer Sicherung ist eine Neukalibrierung erforderlich.
- 3 Entfernen Sie die Batteriefachabdeckung.
- **4** Lösen Sie zwei seitliche Schrauben und eine untere Schraube am Gehäuseboden und entfernen Sie diesen.
- **5** Lösen Sie zwei Schrauben in den oberen Ecken, um die Platine herauszunehmen.
- **6** Entfernen Sie vorsichtig die defekte Sicherung, indem Sie ein Ende der Sicherung herausdrücken und sie aus der Sicherungsklammer nehmen.
- 7 Setzen Sie eine neue Sicherung von derselben Größe und demselben Nennwert ein. Achten Sie darauf, dass die neue Sicherung im Sicherungshalter zentriert ist.
- 8 Stellen Sie sicher, dass der Drehregler auf der Gehäuseoberseite und der Platinenschalter in der Position OFF sind.
- **9** Bringen Sie die Platine und die Bodenabdeckung wieder an.
- **10** Entnehmen Sie die Teilenummer, den Nennwert und die Größe der Sicherungen Tabelle 5-4 auf Seite 136.

5 Wartung

Tabelle 5-4 Sicherungsspezifikationen

Sicherung	Agilent Teilenummer	Nennwert	Größe	Тур
1	2110-1400	440 mA/1.000 V	10 mm × 35 mm	Schnell schmelzende
2	2110-1402	11 A/1.000 V	10 mm × 38 mm	Sicherung

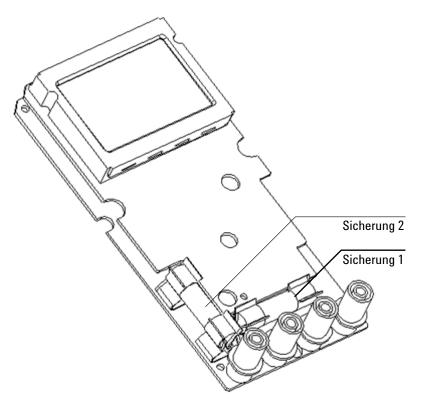


Abbildung 5-9 Austausch von Sicherung

Fehlerbehebung

Zur Vermeidung eines elektrischen Schlags führen Sie Servicemaßnahmen nur durch, wenn Sie dafür qualifiziert sind.

Wenn das Instrument nicht funktioniert, prüfen Sie Batterie und Messleitungen. Ggf. austauschen. Wenn das Instrument immer noch nicht funktioniert, überprüfen Sie, ob Sie die Bedienungsweise in diesem Handbuch befolgt haben, bevor Sie Servicearbeiten in Betracht ziehen.

Verwenden Sie für Servicearbeiten am Instrument nur angegebene Ersatzteile.

Mithilfe von Tabelle 5-5 können Sie einige grundlegenden Probleme und deren Lösungen identifizieren.

5 Wartung

 Tabelle 5-5
 Grundlegende Problembehebungsfunktionen

Fehlfunktion	Problembehebung
Keine OLED-Anzeige nach Einschalten	Batterie prüfen. Batterie austauschen oder Batterie laden.
Kein Signalton	Überprüfen Sie den Einrichtungsmodus, um zu überprüfen, ob die Signalfunktion deaktiviert (OFF) ist. Sollte dies der Fall sein, wählen Sie die gewünschte Signaltonfrequenz aus.
Messung der Stromstärke fehlgeschlagen	Überprüfen Sie die Sicherung.
Keine Ladungsanzeige ^[1]	 440 mA-Sicherung prüfen. Überprüfen Sie den externen DC-Adapter, um sicherzustellen, dass der Ausgang auf DC 24 V eingestellt ist und die Stecker ordnungsgemäß in die Ladeanschlüsse gesteckt sind.
Lebensdauer des Akkus ist sehr kurz nach vollständigem Laden/Akku kann nach längerer Lagerzeit nicht geladen werden	 Prüfen, ob der richtige aufladbare Akku verwendet wird. Versuchen, den Akku zwei- bis dreimal zu laden und zu entladen, um die größtmögliche Akkukapazität zu erreichen. HINWEIS: Die Leistungsfähigkeit des aufladbaren Akkus kann im Laufe der Zeit abnehmen.
Fehler bei der Fernsteuerung	 Das Agilent Logo auf dem IR-USB-Kabel, das mit dem Multimeter verbunden ist, sollte nach oben zeigen. Prüfen Sie die Baudrate, die Parität, das Datenbit und das Stoppbit (Standard ist 9600, None, 8, und 1) im Einrichtungsmodus. Stellen Sie sicher, dass der erforderliche Treiber für IR-USB installiert ist.

Hinweise zur Tabelle mit Verfahren zur grundlegenden Problembehebung:

1 Schalten Sie das Multimeter während des Ladevorgangs niemals ein.

Ersatzteile

In diesem Abschnitt finden Sie Informationen zum Bestellen der Ersatzteile für Ihr Instrument. Sie finden die Liste der Instrument-Supportteile im Messtechnik-Teilekatalog von Agilent unter http://www.agilent.com/find/parts

Die Teilelisten umfassen eine kurze Beschreibung für jedes Teil sowie die entsprechende Agilent Teilenummer.

So bestellen Sie Ersatzteile

Ersatzteile können über die Agilent Teilenummer bei Agilent bestellt werden. Beachten Sie, dass nicht alle aufgelisteten Teile als vor Ort austauschbare Teile verfügbar sind.

Gehen Sie bei der Ersatzteilbestellung bei Agilent wie folgt vor:

- 1 Wenden Sie sich an das Agilent Vertriebsbüro oder Servicecenter in Ihrer N\u00e4he.
- 2 Weisen Sie die Teile mit der Agilent Teilenummer der Supportteileliste aus.
- 3 Geben Sie Modell- und Seriennummer des Instruments an.

5 Wartung

6

Leistungstests und Kalibrierung

```
Kalibrierungsübersicht 142
 Elektronische Kalibrierung bei geschlossenem Gehäuse 142
 Agilent Technologies Kalibrierungsservice 142
 Kalibrierungsintervall 143
 Weitere Empfehlungen für die Kalibrierung 143
Empfohlene Testausrüstung 144
Basisbetriebstests 145
 Testen der Anzeige 145
 Stromanschlusstest 146
 Ladeanschluss-Alarmtest 147
Überlegungen zum Test 148
Leistungsüberprüfungstests 149
Kalibrierungssicherheit 156
 Entsichern des Instruments zur Kalibrierung 156
 Ändern des Kalibrierungssicherheitscodes 159
 Zurücksetzen des Sicherheitscodes auf den Werksstandard 161
Überlegungen zu Einstellungen 163
Gültige Einstellungseingabewerte 164
Kalibrierung über das vordere Bedienfeld 168
 Kalibrierungsprozess 168
 Kalibrierungsverfahren 169
 Kalibrierungszähler 176
 Kalibrierungsfehlercodes 177
```

In diesem Kapitel werden Leistungstest- und Einstellungsverfahren beschrieben.

Kalibrierungsübersicht

Dieses Handbuch enthält Verfahren zur Überprüfung der Instrumentenleistung sowie Verfahren zur Einstellung.

Das Leistungstestverfahren stellt sicher, dass das U1253B True RMS OLED-Multimeter im Rahmen der angegebenen Spezifikationen arbeitet. Das Einstellungsverfahren stellt sicher, dass das Multimeter bis zur nächsten Kalibrierung den Rahmen seiner Spezifikationen einhält.

HINWEIS

Lesen Sie vor Kalibrierung des Instruments "Überlegungen zum Test" auf Seite 148.

Elektronische Kalibrierung bei geschlossenem Gehäuse

Bei dem U1253B True RMS OLED-Multimeter wird die Kalibrierung elektronisch bei geschlossenem Gehäuse vorgenommen. Dies bedeutet, dass keine interne mechanische Einstellung erforderlich ist. Das Instrument berechnet Korrekturfaktoren auf der Basis Ihrer Eingabereferenzwerte, die Sie während des Kalibrierungsprozesses eingegeben haben. Die neuen Korrekturfaktoren werden im permanenten EEPROM-Speicher abgelegt, bis die nächste Kalibrierung (Einstellung) durchgeführt wird. Der Inhalt dieses EEPROM-Speichers wird nicht verändert, auch wenn der Strom abgeschaltet ist.

Agilent Technologies Kalibrierungsservice

Wenn Ihr Instrument kalibriert werden muss, fragen Sie bei Ihrem Agilent Servicecenter nach einem Angebot für die Neukalibrierung.

Kalibrierungsintervall

Für die meisten Anwendungen reicht ein einjähriges Intervall aus. Garantie für Genauigkeitsspezifikationen wird nur übernommen, wenn die Kalibrierung in regelmäßigen Intervallen stattfindet. Garantie für Genauigkeitsspezifikationen wird nicht übernommen, wenn das einjährige Kalibrierungsintervall nicht eingehalten wird. Agilent empfiehlt, für keine Anwendung das Kalibrierungsintervall auf mehr als 2 Jahre auszudehnen.

Weitere Empfehlungen für die Kalibrierung

Spezifikationen werden nur innerhalb der nach der letzten Kalibrierung beginnenden Periode garantiert. Welches Kalibrierungsintervall Sie auch wählen, Agilent empfiehlt, die vollständige Neueinstellung stets zum Kalibrierungsintervall durchzuführen. Dies gewährleistet, dass das U1253B True RMS OLED-Multimeter bis zur nächsten Kalibrierung innerhalb seiner Spezifikationen bleibt. Diese Kalibrierungskriterien bieten die beste Langzeitstabilität.

Während der Leistungsüberprüfungstests werden nur die Leistungsdaten gesammelt. Diese Tests garantieren jedoch nicht, dass das Instrument innerhalb der festgelegten Begrenzungen bleibt. Die Tests dienen nur zur Ermittlung der Funktionen, die eingestellt werden müssen.

Lesen Sie "Kalibrierungszähler" auf Seite 176 und überprüfen Sie, ob alle Einstellungen durchgeführt wurden.

Empfohlene Testausrüstung

Die empfohlene Testausrüstung für Leistungsüberprüfung und Einstellungsverfahren ist nachstehend aufgeführt. Falls das empfohlene Instrument nicht verfügbar ist, verwenden Sie einen Kalibrierungsstandard von gleicher Genauigkeit.

Als alternative Methode wird die Verwendung des digitalen Multimeters Agilent 3458A 8½ -Digit zum Messen weniger genauer, jedoch stabiler Quellen vorgeschlagen. Der gemessene Ausgangswert der Quelle kann als Zielkalibrierungswert in das Instrument eingegeben werden.

Tabelle 6-1 Empfohlene Testausrüstung

Anwendung	Empfohlene Ausrüstung	Empfohlene Genauigkeitsvoraussetzungen
DC-Spannung	Fluke 5520A	< 20% der U1253B Genauigkeitsspez.
DC-Stromstärke	Fluke 5520A	< 20% der U1253B Genauigkeitsspez.
Widerstand	Fluke 5520A	< 20% der U1253B Genauigkeitsspez.
AC-Spannung	Fluke 5520A	< 20% der U1253B Genauigkeitsspez.
AC-Stromstärke	Fluke 5520A	< 20% der U1253B Genauigkeitsspez.
Frequenz	Agilent 33250A	< 20% der U1253B Genauigkeitsspez.
Kapazität	Fluke 5520A	< 20% der U1253B Genauigkeitsspez.
Arbeitszyklus	Fluke 5520A	< 20% der U1253B Genauigkeitsspez.
Nanosiemens	Fluke 5520A	< 20% der U1253B Genauigkeitsspez.
Diode	Fluke 5520A	< 20% der U1253B Genauigkeitsspez.
Frequenzzähler	Agilent 33250A	< 20% der U1253B Genauigkeitsspez.
Temperatur	Fluke 5520A	< 20% der U1253B Genauigkeitsspez.
Rechteckwelle	Agilent 53131A und Agilent 34401A	< 20% der U1253B Genauigkeitsspez.
Kurzschließen	Kurzschlussstecker – Doppelbananenstecker mit Kupferdraht zum Kurzschließen der 2 Anschlüsse	-
Batteriestatus	Fluke 5520A	< 20% der U1253B Genauigkeitsspez.

Basisbetriebstests

Die Basisbetriebstests dienen zur Prüfung des Basisbetriebs des Instruments. Reparatur ist erforderlich, wenn das Instrument einen Basisbetriebstest nicht besteht.

Testen der Anzeige

Drücken und halten Sie die Taste Hold, wenn Sie das Multimeter einschalten, um alle OLED-Pixel anzuzeigen. Prüfen Sie auf tote Pixel.

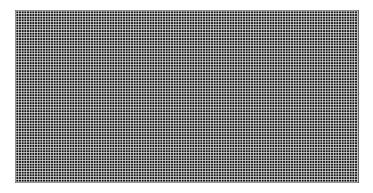


Abbildung 6-1 Anzeigen aller OLED-Pixel

Stromanschlusstest

Dieser Test bestimmt, ob die Eingangswarnung der Stromanschlüsse richtig funktioniert.

HINWEIS

Stellen Sie vor Durchführung dieses Tests sicher, dass der Signalton nicht im Setup deaktiviert ist.

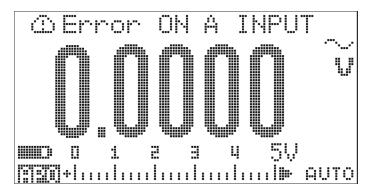


Abbildung 6-2 Stromanschluss-Fehlermeldung

Ladeanschluss-Alarmtest

Dieser Test bestimmt, ob der Ladeanschluss-Alarm richtig funktioniert.

Drehen Sie den Drehregler in eine beliebige Position außer **OFF**

OFF

☐ CHG, mA·A, μA ∼ oder OUT ms.

Stellen Sie am FFCHG-Anschluss ein Spannungsniveau von mehr als 5 V ein. Es erscheint die Fehlermeldung Error ON mA INPUT in der Sekundäranzeige (wie in Abbildung 6-3 dargestellt) und ein anhaltender Signalton ertönt, bis der positive Anschluss von FFCHG-Anschluss entfernt wird.

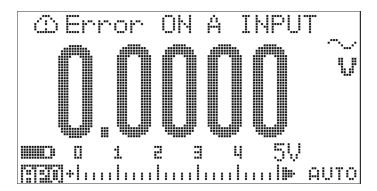


Abbildung 6-3 Ladeanschluss-Fehlermeldung

HINWEIS

Stellen Sie vor Durchführung dieses Tests sicher, dass der Signalton nicht im Setup deaktiviert ist.

Überlegungen zum Test

Lange Testleitungen können auch als Antennen fungieren und so AC-Signale aufnehmen.

Für optimale Leistung sollten alle Verfahren folgenden Empfehlungen entsprechen:

- Stellen Sie sicher, dass die Umgebungstemperatur zwischen 18 °C und 28 °C stabil bleibt. Die Kalibrierung sollte idealerweise bei 23 °C ± 1 °C durchgeführt werden.
- Sorgen Sie dafür, dass die relative Luftfeuchtigkeit in der Umgebung weniger als 80 % beträgt.
- Halten Sie eine Aufwärmphase von fünf Minuten für das Gerät ein.
- Reduzieren Sie Settling- und Rauschfehler durch Verwendung von abgeschirmten, PTFE-isolierten Twisted Pair-Kabeln. Halten Sie die Eingangskabel so kurz wie möglich.

Leistungsüberprüfungstests

Verwenden Sie die folgenden Leistungsüberprüfungstests zur Überprüfung der Messleistung des U1253B True RMS OLED-Multimeter. Die Leistungsüberprüfungstests basieren auf den Spezifikationen, die im Datenblatt des Instruments aufgelistet sind (5989-5509EN).

Die Leistungsüberprüfungstests werden als Akzeptanztests empfohlen, wenn Sie das Instrument erhalten. Führen Sie die Leistungsüberprüfungstests nach der Akzeptanz zu jedem Kalibrierungsintervall durch. (Führen Sie sie vor der Kalibrierung durch, um die Messfunktionen und -bereiche zu ermitteln, die kalibriert werden müssen.)

Führen Sie die Leistungsüberprüfungstests gemäß Tabelle 6-2 auf Seite 150 durch. Bei jedem aufgeführten Schritt:

- 1 Verbinden Sie die Kalibrierungsstandardanschlüsse mit den entsprechenden Anschlüssen des U1253B True RMS OLED-Multimeter.
- 2 Legen Sie den Kalibrierungsstandard mit den in der Spalte "Referenzsignale/-werte" angegebenen Signalen fest (mit jeweils einer Einstellung, wenn mehr als eine Einstellung angegeben ist).
- 3 Drehen Sie den Drehregler des U1253B True RMS OLED-Multimeter zur testenden Funktion und wählen Sie den korrekten Bereich wie in der Tabelle angegeben.
- 4 Prüfen Sie, ob der gemessene Wert innerhalb der angegebenen Fehlergrenzen des Referenzwerts liegt. Wenn ja, dass muss diese Funktion oder dieser Bereich nicht eingestellt (kalibriert) werden. Wenn nicht, dann ist eine Einstellung erforderlich.

6 Leistungstests und Kalibrierung

 Tabelle 6-2
 Leistungsüberprüfungstests

Schritt	Testfunktion	Bereich	Referenzsignale/ -werte	Fehlergrenzen
			5520A Ausgabe	
1	Drehen Sie den Drehregler in die ~ V	5 V	5 V, 1 kHz	± 22,5 mV
	Position [1]		5 V, 10 kHz	± 79,0 mV
			4,5 V, 20 kHz	± 0,1695 mV
			4,5 V, 30 kHz	± 0,1695 mV
			4,5 V, 100 kHz	± 0,1695 mV
		50 V	50 V, 1 kHz	± 225,0 mV
			50 V, 10 kHz	± 790,0 mV
			45 V, 20 kHz	± 1,695 V
			45 V, 30 kHz	± 1,695 V
			45 V, 100 kHz	± 1,695 V
		500 V	500 V, 1 kHz	± 2,25 V
		1000 V	1000 V, 1 kHz	± 8,0 V
2	Drücken Sie auf (Hz), um zum Frequenzmodus zu wechseln.	9,9999 kHz	0,48 V, 1 kHz	± 500 mHz
3	Drücken Sie auf (Hz), um zum Arbeitszyklusmodus zu wechseln.	0,01 % bis 99,99 %	5,0 Vpp @ 50%, Rechteckwelle, 50 Hz	± 0,315%
4	Drehen Sie den Drehregler in die Position	5 V	5 V	± 1,75 mV
	Drücken Sie auf , um die DC V-Messung	50 V	50 V	± 17,5 mV
	auszuwählen.	500 V	500 V	± 200 mV
		1000 V	1000 V	± 800 mV

 Tabelle 6-2
 Leistungsüberprüfungstests (Fortsetzung)

Schritt	Testfunktion	Bereich	Referenzsignale/ -werte	Fehlergrenzen
5	Drücken Sie auf , um die AC V-Messung auszuwählen. [1]	5 V	5 V, 1 kHz 5 V, 10 kHz 4,5 V, 20 kHz	± 22,5 mV ± 79,0 mV ± 0,1695 mV
			4,5 V, 100 kHz	± 0,1695 mV
		50 V	50 V, 1 kHz 50 V, 10 kHz 45 V, 20 kHz 45 V, 100 kHz	± 225 mV ± 790 mV ± 1,695 V ± 1,695 V
		500 V	500 V, 1 kHz	± 2,25 V
		1000 V	1000 V, 1 kHz	± 8,0 V
6	Drehen Sie den Drehregler in die Position	50 mV	50 mV	\pm 75 μ V ^[2]
	mV Drücken Sie auf , um die DC mV-Messung auszuwählen.	500 mV	500 mV -500 mV	± 175 μV ± 175 μV
		1000 mV	1000 mV -1000 mV	± 0,75 mV ± 0,75 mV

6 Leistungstests und Kalibrierung

 Tabelle 6-2
 Leistungsüberprüfungstests (Fortsetzung)

Schritt	Testfunktion	Bereich	Referenzsignale/ -werte	Fehlergrenzen
7	Drücken Sie auf 💗 , um die AC mV-Messung	50 mV	50 mV, 1 kHz	± 0,24 mV
	auszuwählen. [1]		50 mV, 10 kHz	± 0,39 mV
			45 mV, 20 kHz	± 1,695 mV
			45 mV, 30 kHz	± 1,695 mV
			45 mV, 100 kHz	± 1,695 mV
		500 mV	500 mV, 45 Hz	± 2,25 mV
			500 mV, 1 kHz	± 2,25 mV
			500 mV, 10 kHz	± 2,25 mV
			450 mV, 20 kHz	± 16,95 mV
			450 mV, 30 kHz	± 16,95 mV
			450 mV, 100 kHz	± 16,95 mV
		1000 mV	1000 mV, 1 kHz	± 6,5 mV
			1000 mV, 10 kHz	± 11,5 mV
			1000 mV, 20 kHz	± 47 mV
			1000 mV, 30 kHz	± 47 mV
			1000 mv, 100 kHz	± 47 mV
8	Drehen Sie den Drehregler in die Position Ω	500 Ω	500 Ω	\pm 350 m Ω ^[3]
		5 kΩ	5 kΩ	± 3 Ω
		50 kΩ	50 kΩ	± 30 Ω
		500 kΩ	500 kΩ	± 300 Ω
		5 ΜΩ	5 ΜΩ	± 8 kΩ
		50 MΩ ^[4]	50 MΩ	± 505 kΩ
		500 MΩ	450 MΩ	± 36,05 MΩ
9	Drücken Sie auf , um die Leitfähigkeitsmessung (nS) auszuwählen.	500 nS ^[5]	50 nS	± 0,6 nS
10	Drehen Sie den Drehregler in die Position	Diode	1 V	± 1 mV

 Tabelle 6-2
 Leistungsüberprüfungstests (Fortsetzung)

Schritt	Testfunktion	Bereich	Referenzsignale/ -werte	Fehlergrenzen
			33250A Ausgabe	
11	Drücken Sie auf \longrightarrow , um den Frequenzzähler auszuwählen. $^{[6]}$	999,99 kHz	200 mVrms, 100 kHz	± 52 Hz
12	Drücken Sie auf (Ranger), um den Division-durch-100-Frequenzzählermodus auszuwählen.	99,999 MHz	600 mVrms, 10 MHz	± 5,2 kHz
			5520A Ausgabe	
13	Drehen Sie den Drehregler in die	10,000 nF	10,000 nF	± 108 pF
		100,00 nF	100,00 nF	± 1,05 nF
		1000.0 nF	1000,0 nF	± 10,5 nF
		10,000 μF	10,000 μF	± 105 nF
		100,00 μF	100,00 μF	± 1,05 μF
		1000,0 μF	1000,0 μF	± 10,5 μF
		10,000 mF	10,000 mF	± 105 μF
		100,00 mF	100,00 mF	± 3,1 mF
14	Drücken Sie auf , um die	-40 °C bis	0 °C	±1°C
	Temperaturmessung auszuwählen. [8][13][14]	1372 °C	100 °C	±2°C
15	Drehen Sie den Drehregler in die Position	500 μΑ	500 μΑ	± 0,3 μA ^[9]
	μA≂	5000 μΑ	5000 μΑ	± 3 μA ^[9]
16	Wählen Sie , um die ACμMessung auszuwählen. [1]	500 μΑ	500 μA, 1 kHz	± 3,7 μΑ
			500 μA, 20 kHz	± 3,95 μA
		5000 μΑ	5000 μA, 1 kHz	± 37 μA
			5000 μA, 20 kHz	± 39,5 μA
17	Drehen Sie den Drehregler in die Position	50 mA	50 mA	± 80 μA ^[9]
	mA·A 	440 mA	400 mA	± 0,65 mA ^[9]

6 Leistungstests und Kalibrierung

 Tabelle 6-2
 Leistungsüberprüfungstests (Fortsetzung)

Schritt	Testfunktion	Bereich	Referenzsignale/ -werte	Fehlergrenzen
18	Drücken Sie auf , um die AC mA-Messung auszuwählen. [1]	50 mA	50 mA, 1 kHz	± 0,37 mA
	auszuwanien. 4 - 4		50 mA, 20 kHz	± 0,395 mA
		440 mA	400 mA, 45 Hz	± 3 mA
			400 mA, 1 kHz	± 3 mA
	Vorsicht: Verbinden Sie die Ausgänge des Eichg vor Anwendung von 5 A und 10 A.	eräts mit dem A- und COM	-Anschluss des Han	dmultimeters
19	Drücken Sie auf , um die DC A-Messung	5 A	5 A	± 16 mA
	auszuwählen.	10 A ^[10]	10 A	± 35 mA
20	Drücken Sie auf , um die AC A-Messung auszuwählen.	5 A	5 A, 1 kHz	± 37 mA
		5 A	3 A, 5 kHz	± 96 mA
		10 A ^[11]	10 A, 1 kHz	± 90 mA
		Rechteckwellenausgabe	Messungen mit 53131A	
21	Drehen Sie den Drehregler in die Position	120 Hz @ 50%		± 26 mHz
	OUT ms	4800 Hz @ 50%		± 260 mHz
	OUT ms Arbeitszyklus	100 Hz @ 50%		± 0,398% ^[12]
		100 Hz @ 25%		± 0,398% ^[12]
		100 Hz @ 75%		± 0,398% ^[12]

 Tabelle 6-2
 Leistungsüberprüfungstests (Fortsetzung)

Schritt	Testfunktion	Bereich	Referenzsignale/ -werte	Fehlergrenzen
			Messungen mit 34410A	
	OUT ms Amplitude	4800 Hz @ 99,609%		± 0,2 V

Hinweise zu Leistungsüberprüfungstests:

- 1 Der zusätzliche, als Frequenz > 20 kHz und Signaleingang < 10% des Bereichs zu addierende Fehler: 300 Zähler von LSD pro kHz.
- 2 Es kann eine Genauigkeit von 0,05% + 10 erreicht werden, indem Sie die Relationsfunktion verwenden, um den Wärmeeffekt auf null zu setzen (kurze Testleitungen), bevor Sie das Signal messen.
- **3** Die Genauigkeit von 500 Ω und 5 k Ω wird nach der Null-Funktion angegeben.
- 4 Für den Bereich von 50 M Ω /500 M Ω wird eine relative Luftfeuchtigkeit von < 60% angegeben.
- 5 Die Genauigkeit wird für < 50 nS angegeben und die Nullfunktion an offenen Testleitungen durchgeführt.
- 6 Alle Frequenzzähler sind bei der Messung von Signalen mit niedriger Spannung und niedriger Frequenz fehleranfällig. Abschirmung der Eingänge von externem Rauschen ist entscheidend für die Minimierung der Messfehler.
- 7 Verwenden Sie die Null-Funktion, um die Restgrößen zu kompensieren.
- 8 Die Genauigkeit beinhaltet nicht die Toleranz der Thermoelementsonden. Der an das Messgerät angeschlossene Multimeter sollte sich mindestens eine Stunde lang in der Betriebsumgebung befinden.
- 9 Verwenden Sie stets die Relationsfunktion, um den Wärmeeffekt mit offenen Testleitungen auf null zu setzen, bevor Sie das Signal messen. Wenn Sie die Relationsfunktion nicht verwenden, fügen Sie dem Fehler 20 Ziffern hinzu.
- 10 10 A fortlaufend, und der Zusatz von 0,5% zur angegebenen Genauigkeit, wenn für höchstens 30 Sekunden ein Signal von mehr als 10 A bis 20 A gemessen wird. Lassen Sie das Multimeter nach Messung einer Stromstärke von > 10 A über einen Zeitraum abkühlen, der doppelt so lang ist wie die zur Messung benötigte Zeit, bevor Sie niedrige Stromstärken messen.
- 11 Die Stromstärke kann fortlaufend von 2,5 A bis 10 A gemessen werden und der Zusatz von 0,5% zur angegebenen Genauigkeit erfolgt, wenn für höchstens 30 Sekunden ein Signal von mehr als 10 A bis 20 A gemessen wird. Lassen Sie das Multimeter nach Messung einer Stromstärke von > 10 A über einen Zeitraum abkühlen, der doppelt so lang ist wie die zur Messung benötigte Zeit, bevor Sie niedrige Stromstärken messen.
- 12 Für Signalfrequenzen über 1 kHz müssen zur Genauigkeit zusätzlich 0,1% je kHz hinzugefügt werden.
- 13 Stellen Sie sicher, dass die Umgebungstemperatur stabil bei einem Wert ± 1 °C liegt. Das Multimeter muss sich für mindestens 1 Stunde in derselben Betriebsumgebung befinden. Halten Sie das Multimeter von Lüftungsauslässen entfernt.
- 14 Berühren Sie die Testleitungen der Thermoelementsonde nach dem Anschließen an den Kalibrator nicht mehr. Warten Sie etwa 15 Minuten, bis die Verbindung stabil ist, bevor Sie mit der Messung fortfahren.

Kalibrierungssicherheit

Ein Kalibrierungssicherheitscode wird verwendet, um versehentliche oder unberechtigte Einstellungen des U1253B True RMS OLED-Multimeter zu verhindern. Wenn Sie das Instrument erhalten, ist es gesichert. Bevor Sie das Instrument einstellen können, müssen Sie es durch Eingabe des richtigen Sicherheitscodes entsichern (siehe Abschnitt "Entsichern des Instruments zur Kalibrierung" auf Seite 156).

Der Sicherheitscode ist bei Auslieferung des Instruments auf 1234 eingestellt. Der Sicherheitscode wird im permanenten Speicher gespeichert und ändert sich nach dem Ausschalten nicht.

HINWEIS

Sie können das Instrument entsichern und dann den Sicherheitscode über das vordere Bedienfeld oder über die Remoteschnittstelle ändern.

Siehe Abschnitt "Zurücksetzen des Sicherheitscodes auf den Werksstandard" auf Seite 161, wenn Sie Ihren Sicherheitscode vergessen haben.

Entsichern des Instruments zur Kalibrierung

Bevor Sie das Instrument einstellen können, müssen Sie es entsichern, indem Sie den richtigen Sicherheitscode entweder über das vordere Bedienfeld oder über die Remoteschnittstelle des PCs eingeben.

Der standardmäßige Sicherheitscode lautet 1234.

Über das vordere Bedienfeld

- 1 Drehen Sie den Drehregler in die Position **V** (Sie können auch mit einer anderen Drehreglerposition beginnen. Hier wird jedoch davon ausgegangen, dass Sie nach den Schritten in Tabelle 6-2 vorgehen).
- 2 Drücken Sie und simultan, um in den Modus zur Eingabe des Kalibrierungssicherheitscodes zu wechseln.

- **3** Die Sekundäranzeige zeigt "CSC:I 5555" an, wobei das Zeichen "I" für "Input" (Eingabe) steht.
- 4 Drücken Sie auf oder oder geben Sie den Code ein (indem Sie die Ziffern der vorhandenen Nummer "5555" nacheinander ändern).
- **5** Drücken Sie auf oder , um die zu bearbeitende Ziffer auszuwählen, und drücken Sie auf oder , um den Wert zu ändern.
- **6** Drücken Sie zum Abschluss auf (Hz) (Save).
- 7 Ist der richtige Sicherheitscode eingegeben, zeigt die Sekundäranzeige in der oberen linken Ecke 3 Sekunden lang das Wort "PASS" an.
- **8** Wenn ein ungültiger Sicherheitscode eingegeben wurde, wird 3 Sekunden lang ein Fehlercode angezeigt und Sie kehren zum Modus zur Eingabe des Kalibrierungssicherheitscodes zurück.

Siehe hierzu Abbildung 6-4 auf Seite 158.

Um das Instrument wieder zu sichern (bzw. den ungesicherten Modus zu verlassen), drücken Sie gleichzeitig auf hz.

6

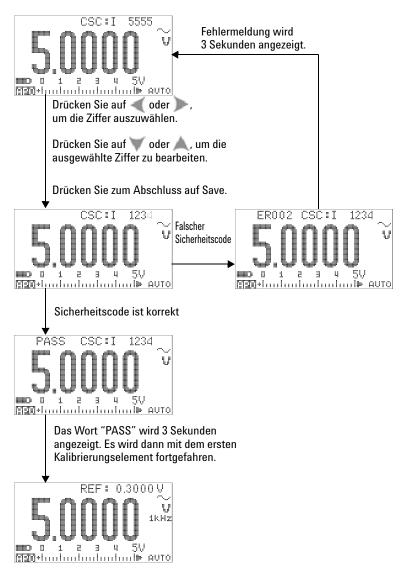


Abbildung 6-4 Entsichern des Instruments zur Kalibrierung

Ändern des Kalibrierungssicherheitscodes

Über das vordere Bedienfeld

- 1 Drücken Sie nach der Entsicherung des Instruments die Taste ilänger als 1 Sekunde, um in den Einstellungsmodus für den Kalibrierungssicherheitscode zu wechseln.
- **2** Der vorhandene Code wird auf der Sekundäranzeige angezeigt, z. B. "CSC:C 1234", wobei das Zeichen "C" für "Change" (Änderung) steht.
- 3 Drücken Sie auf oder , um zu starten und die zu bearbeitende Ziffer auszuwählen, und drücken Sie auf oder , um den Wert zu bearbeiten. (Drücken Sie auf länger als Sekunde zum Beenden ohne Änderung des Codes.)
- 4 Drücken Sie auf (Save), um den neuen Sicherheitscode zu speichern.
- **5** Wurde der neue Kalibrierungssicherheitscode erfolgreich gespeichert, zeigt die Sekundäranzeige in der oberen linken Ecke kurzzeitig das Wort "PASS" an.

Siehe hierzu Abbildung 6-5 auf Seite 160.

6

Abbildung 6-5 Ändern des Kalibrierungssicherheitscodes

Zurücksetzen des Sicherheitscodes auf den Werksstandard

Wenn Sie den richtigen Sicherheitscode vergessen haben, können Sie die folgenden Schritte durchführen, um den Sicherheitscode auf die standardmäßigen Werkseinstellung zurückzusetzen (1234).

HINWEIS

Falls Sie keine Notiz des Sicherheitscodes besitzen (oder diese verloren haben), versuchen Sie es zuerst mit der Eingabe von 1234 (werkseitiger Standardcode) über das vordere Bedienfeld oder die Remoteschnittstelle. Es ist auch möglich, dass der Sicherheitscode überhaupt noch nicht geändert wurde.

- 1 Notieren Sie die letzten 4 Ziffern der Seriennummer des Instruments.
- 2 Drehen Sie den Drehregler in die Position ~ V.
- 3 Drücken Sie und simultan, um in den Modus zur Eingabe des Kalibrierungssicherheitscodes zu wechseln.
- 4 Die Sekundäranzeige zeigt "CSC:I 5555" als Hinweis für die Eingabe des Sicherheitscodes an. Da Sie jedoch den Sicherheitscode nicht besitzen, fahren Sie mit dem nächsten Schritt fort.
- 5 Um ohne die Eingabe des Sicherheitscodes in den Modus zur Einstellung des standardmäßigen Sicherheitscodes zu wechseln, drücken Sie auf länger als 1 Sekunde. Die Sekundäranzeige zeigt "SCD:I 5555" an.
- 6 Drücken Sie auf oder , um zu starten und die zu bearbeitende Ziffer auszuwählen, und drücken Sie auf oder , um den Wert zu ändern. Stellen Sie den Code ein, der mit den letzten 4 Ziffern der Seriennummer des Messgeräts übereinstimmt.
- 7 Drücken Sie auf (Save), um den Eintrag zu bestätigen.
- **8** Wenn die richtigen 4 Ziffern der Seriennummer eingegeben wurden, zeigt die Sekundäranzeige für einen Moment "PASS" an.

Der Sicherheitscode wurde nun auf den Werkstandard 1234 zurückgesetzt. Wie Sie den Sicherheitscode ändern können, erfahren Sie unter "Ändern des Kalibrierungssicherheitscodes" auf Seite 159. Denken Sie daran, den neuen Sicherheitscode zu notieren.

Siehe hierzu Abbildung 6-6 auf Seite 162.

6

Abbildung 6-6 Zurücksetzen des Sicherheitscodes auf den Werksstandard

Überlegungen zu Einstellungen

Zur Einstellung des Instruments benötigen Sie ein Testeingangskabel und einen Anschlusssatz zum Empfangen der Referenzsignale (z. B. vom Eichgerät Fluke 5520A oder Agilent 33250A Funktionsgenerator/Generator für beliebige Wellenformen) sowie einen Kurzschlussstecker.

HINWEIS

Nach jeder erfolgreichen Einstellung zeigt die Sekundäranzeige kurz "PASS" an. Schlägt die Kalibrierung fehl, gibt das Instrument einen Signalton aus, und in der Sekundäranzeige wird für einen Moment ein Fehlercode angezeigt. Eine Liste mit Kalibrierungsfehlercodes finden Sie unter "Kalibrierungsfehlercodes" auf Seite 177. Schlägt die Kalibrierung fehl. lösen Sie das Problem und wiederholen Sie das Verfahren.

Einstellungen für jede Funktion sollten unter Berücksichtigung folgender Überlegungen (sofern zutreffend) durchgeführt werden.

- 1 Den Einstellungen sollte eine fünfminütige Aufwärm- und Stabilisierungszeit des Instruments vorangehen.
- 2 Stellen Sie sicher, dass während der Einstellung kein niedriger Batterieladestatus angezeigt wird. Ersetzen Sie die Batterie oder laden Sie sie sobald wie möglich auf, um falsche Messwerte zu vermeiden.
- 3 Berücksichtigen Sie die Wärmewirkungen, wenn Sie Testleitungen an Eichgerät und Instrument anschließen. Sie sollten nach Anschluss der Testleitungen eine Minute warten, bevor Sie mit der Kalibrierung beginnen.
- 4 Stellen Sie während der Einstellung der Umgebungstemperatur sicher, dass das Instrument mindestens eine Stunde eingeschaltet ist, wobei ein K-Type-Thermoelement zwischen Instrument und Kalibrierungsquelle geschaltet ist.

VORSICHT

Schalten Sie das Instrument niemals während einer Kalibrierung aus. Dadurch könnte der Kalibrierungsspeicher für die aktuelle Funktion gelöscht werden.

Gültige Einstellungseingabewerte

Einstellungen können mit den nachstehenden Eingabewerten durchgeführt werden:

HINWEIS

Für die Seriennummern unter MY51510001 wird die Eingangsfrequenz 10 kHz auf die mit Sternchen (*) gekennzeichneten Elemente angewendet.

Tabelle 6-3 Gültige Einstellungseingabewerte

Funktion	Bereich	Referenzeingabewert	Gültiger Bereich für Referenzeingabe
DC mV	Kurzschließen	KURZSCHLIESSEN	Kurzgeschlossene V - und COM -Anschlüsse
	50 mV	30,000 mV	0,9 bis 1,1 × Eingabereferenzwerte
	500 mV	300,00 mV	0,9 bis 1,1 × Eingabereferenzwerte
	1000 mV	1000,0 mV	0,9 bis 1,1 × Eingabereferenzwerte
AC mV	50 mV	3,000 mV (1 kHz)	0,9 bis 1,1 × Eingabereferenzwerte
		30,000 mV (1 kHz)	0,9 bis 1,1 × Eingabereferenzwerte
		30,000 mV (20 kHz) *	0,9 bis 1,1 × Eingabereferenzwerte
	500 mV	30,00 mV (1 kHz)	0,9 bis 1,1 × Eingabereferenzwerte
		300,00 mV (1 kHz)	0,9 bis 1,1 × Eingabereferenzwerte
		300,00 mV (20 kHz) *	0,9 bis 1,1 × Eingabereferenzwerte
	1000 mV	300,0 mV (1 kHz)	0,9 bis 1,1 × Eingabereferenzwerte
		1000,0 mV (1 kHz)	0,9 bis 1,1 × Eingabereferenzwerte
		1000,0 mV (20 kHz) *	0,9 bis 1,1 × Eingabereferenzwerte
DC V	Kurzschließen	KURZSCHLIESSEN	Kurzgeschlossene V- und COM-Anschlüsse
	5 V	3,0000 V	0,9 bis 1,1 × Eingabereferenzwerte
	50 V	30,000 V	0,9 bis 1,1 × Eingabereferenzwerte
	500 V	300,00 V	0,9 bis 1,1 × Eingabereferenzwerte
	1000 V	1000,0 V	0,9 bis 1,1 × Eingabereferenzwerte

 Tabelle 6-3
 Gültige Einstellungseingabewerte (Fortsetzung)

Funktion	Bereich	Referenzeingabewert	Gültiger Bereich für Referenzeingabe
AC V	5 V	0,3000 V (1 kHz)	0,9 bis 1,1 × Eingabereferenzwerte
(mit Drehregler bei ~ V und		3,0000 V (1 kHz)	0,9 bis 1,1 × Eingabereferenzwerte
~ V ^[2])		3,0000 V (20 kHz) *	0,9 bis 1,1 × Eingabereferenzwerte
	50 V	3,000 V (1 kHz)	0,9 bis 1,1 × Eingabereferenzwerte
		30,000 V (1 kHz)	0,9 bis 1,1 × Eingabereferenzwerte
		30,000 V (20 kHz) *	0,9 bis 1,1 × Eingabereferenzwerte
	500 V	30,00 V (1 kHz)	0,9 bis 1,1 × Eingabereferenzwerte
		300,00 V (1 kHz)	0,9 bis 1,1 × Eingabereferenzwerte
		300,00 V (20 kHz) *	0,9 bis 1,1 × Eingabereferenzwerte
	1000 V	30,0 V (1 kHz)	0,9 bis 1,1 × Eingabereferenzwerte
		300,0 V (1 kHz)	0,9 bis 1,1 × Eingabereferenzwerte
		300,0 V (20 kHz) *	0,9 bis 1,1 × Eingabereferenzwerte
DC μA	Öffnen	ÖFFNEN	Offene Anschlüsse
	500 μΑ	300,00 μΑ	0,9 bis 1,1 × Eingabereferenzwerte
	5000 μΑ	3000,0 μΑ	0,9 bis 1,1 × Eingabereferenzwerte
ΑС μΑ	500 μΑ	30,00 μA ^[1]	0,9 bis 1,1 × Eingabereferenzwerte
		300,00 μΑ	0,9 bis 1,1 × Eingabereferenzwerte
	5000 μΑ	300,0 μΑ	0,9 bis 1,1 × Eingabereferenzwerte
		3000,0 μΑ	0,9 bis 1,1 × Eingabereferenzwerte
DC mA/DC A	Öffnen	ÖFFNEN	Offene Anschlüsse
	50 mA	30,000 mA	0,9 bis 1,1 × Eingabereferenzwerte
	500 mA	300,00 mA	0,9 bis 1,1 × Eingabereferenzwerte
	5 A	3,000 A	0,9 bis 1,1 × Eingabereferenzwerte
	10 A	10,000 A	0,9 bis 1,1 × Eingabereferenzwerte

6 Leistungstests und Kalibrierung

 Tabelle 6-3
 Gültige Einstellungseingabewerte (Fortsetzung)

Funktion	Bereich	Referenzeingabewert	Gültiger Bereich für Referenzeingabe
AC mA/AC A	50 mA	3,000 mA (1 kHz)	0,9 bis 1,1 × Eingabereferenzwerte
		30,000 mA (1 kHz)	0,9 bis 1,1 × Eingabereferenzwerte
	500 mA	30,00 mA (1 kHz)	0,9 bis 1,1 × Eingabereferenzwerte
		30,000 mA (1 kHz)	0,9 bis 1,1 × Eingabereferenzwerte
	5 A	0,3000 A (1 kHz)	0,9 bis 1,1 × Eingabereferenzwerte
		3,0000 A (1 kHz)	0,9 bis 1,1 × Eingabereferenzwerte
	10 A	0,3000 A (1 kHz)	0,9 bis 1,1 × Eingabereferenzwerte
		10,000 A (1 kHz)	0,9 bis 1,1 × Eingabereferenzwerte
Kapazität	Öffnen	ÖFFNEN	Offene Anschlüsse
	10 nF	3,000 nF	0,9 bis 1,1 × Eingabereferenzwerte
		10,000 nF	0,9 bis 1,1 × Eingabereferenzwerte
	100 nF	10,00 nF	0,9 bis 1,1 × Eingabereferenzwerte
		100,00 nF	0,9 bis 1,1 × Eingabereferenzwerte
	1000 nF	100,0 nF	0,9 bis 1,1 × Eingabereferenzwerte
		1000,0 nF	0,9 bis 1,1 × Eingabereferenzwerte
	10 μF	10,000 μF	0,9 bis 1,1 × Eingabereferenzwerte
	100 μF	100,00 μF	0,9 bis 1,1 × Eingabereferenzwerte
	1000 μF	1000,0 μF	0,9 bis 1,1 × Eingabereferenzwerte
	10 mF	10,000 mF	0,9 bis 1,1 × Eingabereferenzwerte

Tabelle 6-3 Gültige Einstellungseingabewerte (Fortsetzung)

Funktion	Bereich	Referenzeingabewert	Gültiger Bereich für Referenzeingabe
Widerstand ^[3]	Kurzschließen	SHORT	Kurzgeschlossene Ω - und ${\bf COM}$ -Anschlüsse
	50 MΩ	ÖFFNEN	Offene Anschlüsse
		10,000 MΩ	0,9 bis 1,1 × Eingabereferenzwerte
	5 ΜΩ	3,000 M Ω	0,9 bis 1,1 × Eingabereferenzwerte
	500 kΩ	300,00 kΩ	0,9 bis 1,1 × Eingabereferenzwerte
	50 kΩ	30,000 kΩ	0,9 bis 1,1 × Eingabereferenzwerte
	5 kΩ	3,0000 kΩ	0,9 bis 1,1 × Eingabereferenzwerte
	500 Ω	300,00 Ω	0,9 bis 1,1 × Eingabereferenzwerte
Diode	Diode	SHORT	Kurzgeschlossene Ω - und ${\bf COM}$ -Anschlüsse
	2 V	2,0000 V	0,9 bis 1,1 × Eingabereferenzwerte
Temperatur	К-Тур	0000,0°C	Sorgen Sie für 0 °C mit Außentemperaturausgleich

Hinweise zu den gültigen Einstellungseingabewerten:

- 1 Die niedrigste AC-Stromausgabe des Eichgeräts Fluke 5520A beträgt 29,00 μ A. Stellen Sie sicher, dass die AC-Kalibrierungsquelle des μ A auf mindestens 30,00 μ A eingestellt ist.
- 2 Beide AC V-Positionen müssen individuell kalibriert werden.
- **3** Achten Sie darauf, "Short" nach der Widerstandskalibrierung unter Verwendung des doppelten Bananensteckers mit Kupferdraht neu zu kalibrieren.

Kalibrierung über das vordere Bedienfeld

Kalibrierungsprozess

Das folgende allgemeine Verfahren ist die empfohlene Methode zur Durchführung einer vollständigen Kalibrierung des Instruments.

- 1 Lesen und berücksichtigen Sie die Informationen unter "Überlegungen zum Test" auf Seite 148.
- **2** Führen Sie die Überprüfungstests zur Charakterisierung des Instruments durch (siehe hierzu Tabelle 6-2 auf Seite 150).
- **3** Führen Sie die Kalibrierungsverfahren durch (siehe "Kalibrierungsverfahren" auf Seite 169; siehe auch "Überlegungen zu Einstellungen" auf Seite 163).
- 4 Sichern Sie das Instrument nach der Kalibrierung.
- 5 Notieren Sie den neuen Sicherheitscode (wenn dieser geändert wurde) sowie die Kalibrierungszahl in den Wartungsunterlagen des Instruments.

HINWEIS

Verlassen Sie den Einstellungsmodus, bevor Sie das Instrument ausschalten.

Kalibrierungsverfahren

- 1 Drehen Sie den Drehregler zu der Funktion, die Sie kalibrieren möchten.
- **2** Entsichern Sie das U1253B True RMS OLED-Multimeter (siehe "Entsichern des Instruments zur Kalibrierung" auf Seite 156).
- 3 Nachdem Sie die Richtigkeit des eingegebenen Sicherheitscodes geprüft haben, zeigt das Instrument den Referenzeingabewert des nächsten Kalibrierungselements (in Tabelle 6-4 auf Seite 172 finden Sie die Auflistung und Sequenz aller Kalibrierungselemente) in der Sekundäranzeige nach einer kurzen Anzeige von "PASS" an.
 - Wenn z. B. die Referenzeingabe des nächsten Kalibrierungselements die Eingangsanschlüsse kurzschließt, wird auf der Sekundäranzeige "REF:+SH.ORT" angezeigt.

HINWEIS

Wenn Sie nicht die Kalibrierung des gesamten Kalibrierungselementsatzes durchführen möchten, können Sie auf oder drücken, um das zu kalibrierende Element auszuwählen.

- **4** Legen Sie die angegebene Referenzeingabe fest und wenden Sie diese an den richtigen Anschlüssen des U1253B Handmultimeters an. Beispiel:
 - Wenn die erforderliche Referenzeingabe "SHORT" lautet, verwenden Sie einen Kurzschlussstecker, um die zwei relevanten Anschlüsse kurzzuschließen.
 - Wenn die erforderliche Referenzeingabe "OPEN" lautet, lassen Sie die Anschlüsse offen.
 - Wenn es sich bei der erforderlichen Referenzeingabe um einen Spannungs-, Strom-, Widerstands-, Kapazitäts- oder Temperaturwert handelt, legen Sie das Eichgerät Fluke 5520A (oder ein anderes Gerät mit dem gleichen Genauigkeitsstandard) fest, um die notwendige Eingabe bereitzustellen.

6

- **5** Wenden Sie die erforderliche Referenzeingabe an den richtigen Anschlüssen an und drücken Sie auf Hz, um mit dem aktuellen Kalibrierungselement zu beginnen.
- 6 Während der Kalibrierung zeigen die Primäranzeige und die Säulendiagrammanzeige den unkalibrierten Messwert an und die Kalibrierungsanzeige "CAL", erscheint in der oberen linken Ecke der Sekundäranzeige. Wenn der Messwert im zulässigen Bereich liegt, wird "PASS" für einen Moment angezeigt und das Instrument fährt mit dem nächsten Kalibrierungselement fort. Wenn der Messwert außerhalb des zulässigen Bereichs liegt, bleibt das Instrument beim aktuellen Kalibrierungselement, nachdem der Fehlercode 3 Sekunden lang angezeigt wurde. In diesem Fall müssen Sie prüfen, ob die korrekte Referenzeingabe verwendet wurde. In Tabelle 6-5 auf Seite 177 finden Sie Erläuterungen zu den Fehlercodes.
- 7 Wiederholen Sie die Schritte 4 und 5, bis alle Kalibrierungselemente für diese bestimmte Funktion abgeschlossen sind.
- **8** Wählen Sie eine weitere Funktion zur Kalibrierung. Wiederholen Sie die Schritte 4 bis 7.
 - Bei einer Drehreglerposition mit mehr als einer Funktion wie z. B. drücken Sie auf , um zur nächsten Funktion zu gelangen.
- 9 Nach der Kalibrierung aller Funktionen, drücken Sie gleichzeitig auf und hz, um den Kalibrierungsmodus zu beenden.
- 10 Schalten Sie das Instrument aus und wieder an. Das Gerät kehrt zum normalen Messmodus zurück.

Siehe Abbildung 6-7 auf Seite 171.

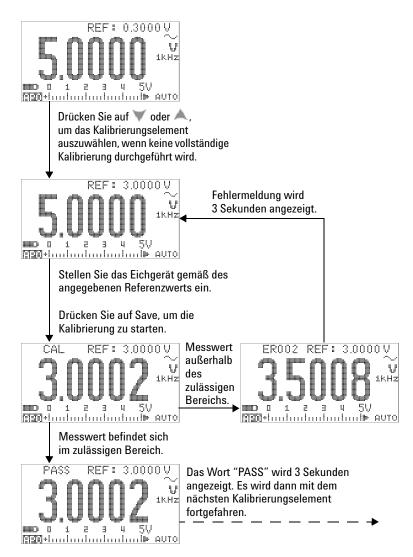


Abbildung 6-7 Typischer Kalibrierungsprozessverlauf

 Tabelle 6-4
 Liste der Kalibrierungselemente

Funktion	Bereich	Kalibrierungselement ^[1]	Eingabereferenz
AC V	5 V	0,3000 V (1 kHz)	0,3 V, 1 kHz
(mit Drehregler bei		3,0000 V (1 kHz)	3 V, 1 kHz
~ V und ~ V ^[2])		3,0000 V (10 kHz)	3 V, 10 kHz
	50 V	3,000 V (1 kHz)	3 V, 1 kHz
		30,000 V (1 kHz)	30 V, 1 kHz
		30,000 V (10 kHz)	30 V, 10 kHz
	500 V	30,00 V (1 kHz)	30 V, 1 kHz
		300,00 V (1 kHz)	300 V, 1 kHz
		300,00 V (10 kHz)	300 V, 10 kHz
	1000 V	30,0 V (1 kHz)	30 V, 1 kHz
		300,0 V (1 kHz)	300 V, 1 kHz
		300,0 V (10 kHz)	300 V, 10 kHz
		(für diese Funktion erledigt; Ändern Sie die Drehreglerposition oder drücken Sie auf , um die nächste Funktion auszuwählen, die kalibriert werden muss.)	
DC V	Kurzschließen	KURZSCHLIESSEN	Doppelbananenstecker mit Kupferdraht zum Kurzschließen
	5 V	3,0000 V	3 V
	50 V	30,000 V	30 V
	500 V	300,00 V	300 V
	1000 V	1000,0 V	1000 V
		(abgeschlossen)	
DC mV	Kurzschließen	KURZSCHLIESSEN	Doppelbananenstecker mit Kupferdraht zum Kurzschließen
	50 mV	30,000 mV	30 mV
	500 mV	300,00 mV	300 mV
	1000 mV	1000,0 mV	1000 mV
		(abgeschlossen)	

 Tabelle 6-4
 Liste der Kalibrierungselemente (Fortsetzung)

Funktion	Bereich	Kalibrierungselement ^[1]	Eingabereferenz	
AC mV	50 mV	3,000 mV (1 kHz)	3 mV, 1 kHz	
		30,000 mV (1 kHz)	30 mV, 1 kHz	
		30,000 mV (10 kHz)	30 mV, 10 kHz	
	500 mV	30,00 mV (1 kHz)	30 mV, 1 kHz	
		300,00 mV (1 kHz)	300 mV, 1 kHz	
		300,00 mV (10 kHz)	300 mV, 10 kHz	
	1000 mV	300,0 mV (1 kHz)	300 mV, 1 kHz	
		1000,0 mV (1 kHz)	1000 mV, 1 kHz	
		1000,0 mV (10 kHz)	1000 mV, 10 kHz	
		(abgeschlossen)		
Widerstand ^[4]	Kurzschließen	KURZSCHLIESSEN	Doppelbananenstecker mit Kupferdraht zum Kurzschließen	
	50 MΩ	ÖFFNEN	Entfernen Sie die Testleitungen oder Kurzschlussstecker und	
		10,000 MΩ	lassen Sie die Anschlüsse offen 10 M Ω	
	5 ΜΩ	3,0000 M Ω	$3\mathrm{M}\Omega$	
	500 kΩ	300,00 kΩ	300 kΩ	
	50 kΩ	30,000 kΩ	30 kΩ	
	5 kΩ	3,0000 kΩ	3 kΩ	
	500 Ω	300,00 Ω	300 Ω	
		(abgeschlossen)		
Diode	Kurzschließen	KURZSCHLIESSEN	Doppelbananenstecker mit Kupferdraht zum Kurzschließen	
	2 V	2,0000 V (done)	2 V	

6 Leistungstests und Kalibrierung

 Tabelle 6-4
 Liste der Kalibrierungselemente (Fortsetzung)

Funktion	Bereich	Kalibrierungselement ^[1]	Eingabereferenz
Kapazität	Öffnen	ÖFFNEN	Entfernen Sie die Testleitungen oder Kurzschlussstecker und lassen Sie die Anschlüsse offen
	10 nF	3,000 nF	3 nF
		10,000 nF	10 nF
	100 nF	10,00 nF	10 nF
		100,00 nF	100 nF
	1000 nF	100,0 nF	100 nF
		1000,0 nF	1000 nF
	10 μF	10,000 μF	10 μF
	100 μF	100,00 μF	100 μF
	1000 μF	1000,0 μF	1000 μF
	10 mF	10,000 mF	10 mF
		(abgeschlossen)	
Temperatur ^[5]	К-Тур	0000,0 °C	0 °C
		(abgeschlossen)	
DC μA	Öffnen	ÖFFNEN	Entfernen Sie die Testleitungen oder Kurzschlussstecker und lassen Sie die Anschlüsse offen.
	500 μΑ	300,00 μΑ	300 μΑ
	5000 μΑ	3000,0 μΑ	3000 μΑ
		(abgeschlossen)	
ΑС μΑ	500 μΑ	30,00 μA (1 kHz) ^[3]	30 μA, 1 kHz
		300,00 μA (1 kHz)	300 μA, 1 kHz
	5000 μΑ	300,0 μA (1 kHz)	300 μA, 1 kHz
		3000,0 μA (1 kHz)	3000 μA, 1 kHz
		(abgeschlossen)	

Tabelle 6-4 Liste der Kalibrierungselemente (Fortsetzung)

Funktion	Bereich	Kalibrierungselement ^[1]	Eingabereferenz
DC mA/DC A	Offen für alle Bereiche	ÖFFNEN	Entfernen Sie die Testleitungen oder Kurzschlussstecker und lassen Sie die Anschlüsse offen
	50 mA	30,000 mA	30 mA
	500 mA	300,00 mA	300 mA
	Verschieben Sie die	positive Testleitung vom Anschluss μ	A.mA zum Anschluss A.
	Vorsicht: Verbinden bevor Sie 3 A und 10	Sie das Eichgerät mit den Anschlüss A anlegen.	en A und COM des Multimeters
	5 A	3,0000 A	3 A
	10 A	10,000 A (abgeschlossen)	10 A
AC mA/AC A	50 mA	3,000 mA (1 kHz) 30,000 mA (1 kHz)	3 mA, 1 kHz 30 mA, 1 kHz
	500 mA	30,00 mA (1 kHz) 300,00 mA (1 kHz)	30 mA, 1 kHz 300 mA, 1 kHz
	Verschieben Sie die	positive Testleitung vom Anschluss μ	A.mA zum Anschluss A.
	Vorsicht: Verbinden bevor Sie 3 A und 10	Sie das Eichgerät mit den Anschlüss A anlegen.	en A und COM des Multimeters
	5 A	0,3000 A (1 kHz) 3,0000 A (1 kHz)	0,3 A, 1 kHz 3 A, 1 kHz
	10 A	3,000 A (1 kHz) 10,000 A (1 kHz) (abgeschlossen)	3 A, 1 kHz 10 A, 1 kHz

Hinweise zur Liste der Kalibrierungselemente:

- 1 Drücken Sie auf oder , um das Kalibrierungselement auszuwählen (wenn nicht alle Elemente kalibriert werden sollen). Nach der erfolgreichen Kalibrierung eines Elements fährt das Multimeter automatisch mit dem nächsten Element fort.
- 2 Beide AC V-Positionen müssen individuell kalibriert werden.
- 3 Die niedrigste AC-Stromausgabe des Eichgeräts Fluke 5520A beträgt 29,0 μA, deshalb muss eine Ausgabe von mindestens 30,0 μA für das Eichgerät eingestellt werden.
- 4 Achten Sie darauf, "Short" nach der Widerstandskalibrierung unter Verwendung des doppelten Bananensteckers mit Kupferdraht neu zu kalibrieren.
- 5 Stellen Sie sicher, dass das Multimeter eingeschaltet ist und für mindestens 60 Minuten stabilisiert wurde, wobei das K-Typ-Thermoelement das Multimeter mit dem Kalibratorausgang verbindet.

Kalibrierungszähler

Der Kalibrierungszähler bietet eine unabhängige "Serialisierung" Ihrer Kalibrierungen. Er ermöglicht es Ihnen zu bestimmen, wie häufig Ihr Instrument kalibriert wurde. Durch Überwachen des Kalibrierungszählers kann festgestellt werden, ob eine nicht autorisierte Kalibrierung durchgeführt wurde. Mit jeder Kalibrierung des Instruments erhöht sich der Wert um 1.

Die Kalibrierungszahl wird im permanenten EEPROM-Speicher gespeichert, dessen Inhalt sich auch nach dem Ausschalten oder dem Zurücksetzen der Remoteschnittstelle nicht verändert. Ihr U1253B True RMS OLED-Multimeter wurde vor Auslieferung kalibriert. Lesen Sie beim Erhalt Ihres Multimeters den Kalibrierungszähler ab und notieren Sie den Wert zu Wartungszwecken.

Die Kalibrierungszahl erhöht sich auf max. 65.535 und beginnt dann wieder mit 0. Die Kalibrierungszahl kann nicht programmiert oder zurückgesetzt werden. Es handelt sich hierbei um einen elektronischen "Serialisierungswert".

Um die aktuelle Kalibrierungszahl anzuzeigen, entsichern Sie das Instrument über das vordere Bedienfeld (siehe "Entsichern des Instruments zur Kalibrierung" auf Seite 156) und drücken Sie dann auf (3), um den Kalibrierungszähler anzuzeigen. Drücken Sie erneut auf (3), um die Kalibrierungszahlanzeige zu schließen.

Kalibrierungsfehlercodes

Tabelle 6-5 führt die verschiedenen Fehlercodes für den Kalibrierungsprozess auf.

 Tabelle 6-5
 Kalibrierungsfehlercodes und ihre jeweilige Bedeutung

Fehlercode	Beschreibung
ER200	Kalibrierungsfehler: Kalibrierungsmodus ist gesichert.
ER002	Kalibrierungsfehler: Sicherheitscode ungültig.
ER003	Kalibrierungsfehler: Seriennummer ungültig.
ER004	Kalibrierungsfehler: Kalibrierung abgebrochen.
ER005	Kalibrierungsfehler: Wert außerhalb des Bereichs.
ER006	Kalibrierungsfehler: Signalmessung außerhalb des Bereichs.
ER007	Kalibrierungsfehler: Frequenz außerhalb des Bereichs.
ER008	EEPROM-Schreibfehler.

6 Leistungstests und Kalibrierung

Agilent U1253B True RMS OLED-Multimeter Benutzer- und Servicehandbuch

Spezifikationen

```
Produkteigenschaften 180
Messkategorie 182
 Messkategoriedefinition 182
Spezifikationsbedingungen 183
Elektrische Spezifikationen 184
 Elektrische Spezifikationen 184
 AC-Spezifikationen 188
 AC- und DC-Spezifikationen 190
 Kapazitätsspezifikationen 192
 Temperaturspezifikationen 193
 Kapazitätsspezifikationen 194
 Arbeitszyklus- und Impulsbreitenspezifikationen 194
 Spezifikationen für Frequenzempfindlichkeit 195
 Spezifikationen für Spitzenwerthalten 196
 Frequenzzählerspezifikationen 197
 Rechteckwellenausgabe 198
Betriebsspezifikationen 199
 Anzeigen der Aktualisierungsrate (ungefähr) 199
 Eingangsimpedanz 200
```

Dieses Kapitel führt die Produkteigenschaften, Spezifikationsvoraussetzungen und die Spezifikationen für das U1253B True RMS OLED-Multimeter auf.

Produkteigenschaften

NETZTEIL

Batterietyp:

- Aufladbarer Ni-MH-Akku mit 7,2 V Nennspannung, Größe 9 V
- Aufladbarer Ni-MH-Akku mit 8,4 V Nennspannung, Größe 9 V
- 9-V-Alkalibatterie (ANSI/NEDA 1604A oder IEC 6LR61)
- 9-V-Zink-Kohle-Batterie (ANSI/NEDA 1604D oder IEC6F22)

Akku-/Batteriebetriebsdauer:

- 8 Stunden typisch (basierend auf vollständig geladenen Ni-MH-Akkus mit 300 mAH für DC-Spannungsmessung)
- 14 Stunden typisch (basierend auf neuen 9-V-Alkalibatterien für DC-Spannungsmessung)

Ladedauer:

 Weniger als 220 Minuten bei einer Umgebungstemperatur von 10 °C bis 30°C. (Bei tiefentladenem Akku ist eine verlängerte Ladezeit zur Wiederherstellung der vollständigen Kapazität erforderlich.)

ENERGIEVERBRAUCH

Maximal 420 mVA.

ANZEIGE

- Orangefarbene OLED-Grafikanzeige (Organic Light Emitting Diode) mit maximalem Messwert von 51.000 Z\u00e4hlern.
- · Automatische Polaritätsanzeige.

BETRIEBSUMGEBUNG

- Temperatur: Volle Genauigkeit von –20 °C bis 55 °C
- Luftfeuchtigkeit: Volle Genauigkeit bei bis zu 80 % RH (relative Luftfeuchtigkeit) bei Temperaturen bis 35 °C, linear abnehmend bis 50 % RH bei 55 °C
- · Höhe:
 - 0 2000 Meter gemäß IEC 61010-1 2nd Edition CAT III, 1000 V/CAT IV, 600 V
 - $^{\circ}~2000-3000$ Meter gemäß IEC 61010-1 2nd Edition CAT III, 1000 V/CAT IV, 600 V
- · Verschmutzungsgrad II

LAGERUNGSTEMPERATUR

-40 °C bis 70 °C (ohne Batterie)

SICHERHEITSNORMEN

- EN/IEC 61010-1:2001
- ANSI/UL 61010-1:2004
- CAN/CSA-C22.2 Nr. 61010-1-04

MESSKATEGORIE

CAT III 1000 V/ CAT IV 600 V Überspannungsschutz

EMV-Richtlinien

Erfüllt die Richtlinien der industriellen Norm EN61326-1

STOSS UND VIBRATION

Geprüft nach IEC / EN 60068-2

TEMPERATURKOEFFIZIENT

0,15 × (angegebene Genauigkeit) / °C (von -20 °C bis 18 °C, bis 28 °C bis 55 °C)

GLEICHTAKTUNTERDRÜCKUNGSVERHÄLTNIS (CMRR)

>100 dB bei DC, 50/60 Hz \pm 0,1% (1 k Ω unsymmetrisch)

GEGENTAKTUNTERDRÜCKUNGSVERHÄLTNIS (NMRR)

>90 dB bei 50/60 Hz $\pm 0.1\%$

ABMESSUNGEN ($B \times H \times T$)

94,4 × 203,5 × 59 mm

GEWICHT

527± 5 Gramm mit Batterie

GARANTIE

Siehe hierzu http://www.agilent.com/go/warranty terms

- · Drei Jahre für das Produkt
- Drei Monate für Standardzubehör des Produkts, sofern nicht anders angegeben

Beachten Sie, dass Folgendes nicht im Rahmen der Produktgarantie abgedeckt wird:

- Schäden durch Verunreinigung
- · Normale Abnutzung der mechanischen Komponenten
- · Handbücher, Sicherungen und Standardeinwegbatterien

KALIBRIERUNGSZYKLUS

1 Jahr

Messkategorie

Das Agilent U1253B True RMS OLED-Multimeter hat die Sicherheitseinstufung CAT III 1.000 V/CAT IV, 600 V.

Messkategoriedefinition

Messkategorie I Messungen in Schaltkreisen, die nicht direkt an das Hauptstromnetz angeschlossen sind. Beispiele: Messungen an Stromkreisen, die nicht vom AC-Hauptstromnetz abgeleitet sind, oder an vom Hauptstromnetz abgeleiteten Stromkreisen, die besonders gesichert sind (intern).

Messkategorie II Messungen in Schaltkreisen, die direkt an eine Niederspannungsinstallation angeschlossen sind. Beispiele: Messungen an Haushaltsgeräten, tragbaren Geräten und vergleichbaren Geräten.

Messkategorie III Messungen an Gebäudeinstallationen. Beispiele: Messungen an Verteilungen, Trennschaltern, Verkabelungen, einschließlich Kabeln, Stromanschlüssen, Abzweigdosen, Schaltern, Steckdosen in festen Installationen und Geräte für den industriellen Gebrauch sowie einige andere Geräte einschließlich stationärer Motoren mit ständiger Verbindung zu festen Installationen.

Messkategorie IV Messungen an der Quelle einer Niederspannungsinstallation. Beispiele: Stromzähler und Messungen an primären Überspannungsschutzgeräten und Wellenkontrolleinheiten.

Spezifikationsbedingungen

- Die DC-Spezifikationen beziehen sich auf Messungen, die nach einer mindestens einminütigen Aufwärmphase durchgeführt werden.
- Die AC- und AC+DC-Spezifikationen beziehen sich auf Messungen von Sinuskurven, die nach einer mindestens einminütigen Aufwärmphase durchgeführt werden.
- Die Genauigkeit des Multimeters kann beeinträchtigt werden, wenn es in einer Umgebung verwendet wird, in der elektromagnetische Interferenzen oder nennenswerte elektrostatische Ladungen auftreten.

Elektrische Spezifikationen

DC-Spezifikationen

Tabelle 7-1 DC-Genauigkeit ± (% des Messwerts + Nr. der niederwertigsten Ziffer)

Funktion	Bereich ^[a]	Auflösung	Teststrom oder Lastspannung	Genauigkeit
	50,000 mV	0,001 mV	-	0,05 + 50 ^[2]
	500,00 mV	0,01 mV	-	0,025 + 5
	1000,0 mV	0,1 mV	-	0,025 + 5
Spannung ^[1]	5,0000 V	0,0001 V	-	0,025 + 5
	50,000 V	0,001 V	-	0,025 + 5
	500,00 V	0,01 V	-	0,030 + 5
	1000,0 V	0,1 V	-	0,030 + 5

Hinweise für DC-Spannungsspezifikationen:

a 2 % Bereichsüberschreitung in allen Bereichen außer dem DC-Bereich von 1000 V.

¹ Eingangsimpedanz: Siehe Tabelle 7-17.

² Die Genauigkeit könnte 0,05%+5 betragen. Verwenden Sie stets die Null-Funktion, um den Wärmeeffekt auf null zu setzen (kurze Testleitungen), bevor Sie das Signal messen.

Tabelle 7-1 DC-Genauigkeit ± (% des Messwerts + Nr. der niederwertigsten Ziffer) (Fortsetzung)

Funktion	Bereich ^[a]	Auflösung	Teststrom oder Lastspannung	Genauigkeit
	500,00 Ω ^[3]	0,01 Ω	1,04 mA	0,05 + 10
	5,0000 kΩ ^[3]	0,0001 kΩ	416 μΑ	0,05 + 5
	50,000 kΩ	0,001 kΩ	41,2 μΑ	0,05 + 5
	500,00 kΩ	0,01 kΩ	4,12 μΑ	0,05 + 5
Widerstand ^{[6][7]}	5,0000 MΩ	0,0001 MΩ	375 nA $//$ 10 M Ω	0,15 + 5
	50,000 M $\Omega^{[4]}$	0,001 MΩ	187 nA // 10 MΩ	1,00 + 5
	500,00 M $\Omega^{[4]}$	0,01 MΩ	187 nA // 10 MΩ	3,00+5 < 200 M 8,00+5 > 200 M
	500,00 nS ^[5]	0,01 nS	187 nA	1+10

Hinweise für Widerstandsspezifikationen:

- a 2 % Bereichsüberschreitung in allen Bereichen außer dem DC-Bereich von 1000 V.
- 3 Die Genauigkeit von 500 Ω und 5 kΩ wird nach der Null-Funktion angegeben, die verwendet wird, um den Widerstand der Testleitung und den Wärmeeffekt abzuziehen.
- **4** Für den Bereich von 50 M Ω /500 M Ω wird eine relative Luftfeuchtigkeit von < 60% angegeben.
- 5 Die Genauigkeit wird für < 50 nS angegeben und nach der Null-Funktion mit offener Testleitung verwendet.
- **6** Die Spezifikationen sind für den Widerstand (2-Wire Ohms) mit der Math. Null-Funktion definiert. Addieren Sie ohne Verwendung der Math. Null-Funktion einen zusätzlichen Fehler von 0,2 Ω.
- 7 Maximale offene Spannung: < +4,2 V.

7 Spezifikationen

Tabelle 7-1 DC-Genauigkeit ± (% des Messwerts + Nr. der niederwertigsten Ziffer) (Fortsetzung)

Funktion	Bereich ^[a]	Auflösung	Teststrom oder Lastspannung	Genauigkeit
	500,00 μΑ	0,01 μΑ	< 0,06 V	0,05 + 5 ^[9]
	5000,0 μΑ	0,1 μΑ	0,6 V	0,05 + 5 ^[9]
C4	50,000 mA	0,001 mA	0,09 V	0,15 + 5 ^[9]
Stromstärke	440,00 mA	0,01 mA	0,9 V	0,15 + 5 ^[9]
	5,0000 A	0,0001 A	0,2 V	0,30 + 10
	10,000 A ^[8]	0,001 A	0,4 V	0,30 + 5

Hinweise für DC-Stromstärkespezifikationen:

- a 2 % Bereichsüberschreitung in allen Bereichen außer dem DC-Bereich von 1000 V.
- 8 Stromstärke kann bis zu 10 A kontinuierlich gemessen werden. Weitere 0,5% müssen zur angegebenen Genauigkeit addiert werden, wenn das gemessene Signal für maximal 30 Sekunden im Bereich von 10 A bis 20 A liegt. Es wird empfohlen, nach Messung einer Stromstärke von > 10 A das Messgerät über einen Zeitraum abkühlen zu lassen (im Status OFF), der doppelt so lang ist wie die zur Messung benötigte Zeit, bevor Sie niedrige Stromstärken messen.
- 9 Verwenden Sie stets die Nullfunktion, um den Wärmeeffekt mit offenen Testleitungen auf null zu setzen, bevor Sie das Signal messen. Wenn die Nullfunktion nicht verwendet wird, müssen der angegebenen Genauigkeit 20 zusätzliche Zähler hinzugefügt werden. Wärmeeffekte könnten aus folgenden Gründen auftreten:
 - Falsches Vorgehen beim Messen von Hochspannungssignalen im Bereich 50 V bis 1000 V mit der Widerstands-, Dioden- oder mV-Messfunktion.
 - Nach dem vollständigen Laden des Akkus.
 - Nach Messung einer Stromstärke von mehr als 500 mA sollte das Messgerät über einen Zeitraum abkühlen, der doppelt so lang ist wie die zur Messung benötigte Zeit.

Tabelle 7-1 DC-Genauigkeit ± (% des Messwerts + Nr. der niederwertigsten Ziffer) (Fortsetzung)

Funktion	Bereich ^[a]	Auflösung	Teststrom oder Lastspannung	Genauigkeit
Durchgang ^[10]	500,00 Ω	0,01 Ω	1,04 mA	0,05 + 10

Hinweise zu Durchgangsspezifikationen:

10 Bei augenblicklichen Durchgängen ertönt der integrierte Signalton, wenn der Widerstand weniger als 10,0 Ω beträgt.

Diode [11][12][13]	3,0000 V	0,1 mV	1,04 mA	0,05 + 5

Hinweise für Diodenspezifikationen:

- a 2 % Bereichsüberschreitung in allen Bereichen außer dem DC-Bereich von 1000 V.
- 11 Der integrierte Signalton ertönt, wenn der Messwert weniger als etwa 50 mV beträgt. Zudem ertönt ein Einzelton bei normalen Durchlassvorspannungsdioden oder Halbleiteranschlüssen mit einer Vorspannung im Bereich zwischen 0,3 V und 0.8 V.
- 12 Diese Spezifikationen sind für Spannungen vorgesehen, die nur an Eingangsanschlüssen gemessen wurden. Der Teststrom ist typisch. Eine Änderung der Stromquelle erzeugt eine Änderung des Spannungsabfalls an einem Diodenanschluss.
- 13 Maximale offene Spannung: < + 4.2 V.

AC-Spezifikationen

Tabelle 7-2 Genauigkeitsspezifikationen ± (% des Messwerts + Nr. der niederwertigsten Ziffer) für True RMS AC-Spannung

Funktion			Genauigkeit ^{[1][2][3]}				
	Bereich ^[5]	Auflösung	20 Hz bis 45 Hz	45 Hz bis 1 kHz	1 kHz bis 5 kHz	5 kHz bis 15 kHz	15 kHz bis 100 kHz ^[4]
	50,000 mV	0,001 mV	1,5 + 20	0,4 + 40	0,7 + 40	0,75 + 40	3,5 + 120
	500,00 mV	0,01 mV	1,5 + 60	0,4 + 25	0,4 + 25	0,75 + 40	3,5 + 120
	1000,0 mV	0,1 mV	1,5 + 60	0,4 + 25	0,4 + 25	0,75 + 40	3,5 + 120
Spannung	5,0000 V	0,0001 V	1,5 + 60	0,4 + 25	0,6 + 25	1,5 + 40	3,5 + 120
	50,000 V	0,001 V	1,5 + 60	0,4 + 25	0,4 + 25	1,5 + 40	3,5 + 120
	500,00 V	0,01 V	1,5 + 60	0,4 + 25	0,4 + 25	-	-
	1000,0 V	0,1 V	1,5 + 60	0,4 + 40	0,4 + 40	-	-

Hinweise für AC-Spannungsspezifikationen:

- 1 Eingangsimpedanz: Siehe Tabelle 7-17.
- 2 Diese Spezifikationen sind für Signaleingänge > 5% des Bereichs definiert.
- 3 Scheitelfaktor ≤3,0 bei Full Scale, 5,0 bei Half Scale mit Ausnahme der Bereiche 1.000 mV und 1.000 V, wo der Scheitelfaktor 1,5 bei Full Scale und 3,0 bei Half Scale beträgt. Für eine nicht sinusförmige Wellenform fügen Sie 0,1% des Messwerts ± 0,3% des Bereichs hinzu.
- 4 Der zusätzliche, als Frequenz > 15 kHz und Signaleingang < 10% des Bereichs zu addierende Fehler: 3 Zähler von LSD pro kHz.
- 5 2% Bereichsüberschreitung in allen Bereichen außer AC 1.000 V.

Tabelle 7-3 Genauigkeitsspezifikationen ± (% des Messwerts + Nr. der niederwertigsten Ziffer) für True RMS AC-Strom

Funktion			Genauigkeit ^{[1][2]}				
	Bereich ^[7]	Auflösung	20 Hz bis 45 Hz	45 Hz bis 1 kHz	1 kHz bis 20 kHz	20 kHz bis 100 kHz ^{[3][4]}	
	500,00 μA ^[5]	0,01 μΑ	1,0 + 20	0,7 + 20	0,75 + 20	5 + 80	
	5000,0 μΑ	0,1 μΑ	1,0 + 20	0,7 + 20	0,75 + 20	5 + 80	
0	50,000 mA	0,001 mA	1,0 + 20	0,7 + 20	0,75 + 20	5 + 80	
Stromstärke	440,00 mA	0,01 mA	1,0 + 20	0,7 + 20	1,5 + 20	5 + 80	
	5,0000 A	0,0001 A	1,5 + 20 ^[6]	0,7 + 20	3 + 60	-	
	10,000 A	0,001 A	1,5 + 20 ^[6]	0,7 + 20	< 3 A / 5 kHz	-	

Hinweise für AC-Stromstärkespezifikationen:

- 1 Diese Spezifikationen sind für Signaleingänge > 5% des Bereichs definiert.
- 2 Stromstärke kann von 2,5 A bis zu 10 A kontinuierlich gemessen werden. Weitere 0,5% müssen zur angegebenen Genauigkeit addiert werden, wenn das gemessene Signal für maximal 30 Sekunden im Bereich von 10 A bis 20 A liegt. Lassen Sie das Messgerät nach Messung einer Stromstärke von > 10 A über einen Zeitraum abkühlen (im Status OFF), der doppelt so lang ist wie die zur Messung benötigte Zeit, bevor Sie niedrige Stromstärken messen.
- 3 Der zusätzliche, als Frequenz > 15 kHz und Signaleingang < 10% des Bereichs zu addierende Fehler: 3 Zähler von LSD pro kHz.
- 4 Durch Konstruktions- und Typprüfungen verifiziert.
- 5 Eingangsstromstärke > 35 μArms.
- 6 Eingangsstromstärke < 3 Arms.
- 7 2% Bereichsüberschreitung in allen Bereichen außer AC 1.000 V.

AC- und DC-Spezifikationen

Tabelle 7-4 Genauigkeitsspezifikationen ± (% des Messwerts + Nr. der niederwertigsten Ziffer) für AC- und DC-Spannung

Funktion			Genauigkeit für AC- und DC-Spannung [1][2]				
	Bereich ^[4]	Auflösung	30 Hz bis 45 Hz	45 Hz bis 1 kHz	1 kHz bis 5 kHz	5 kHz bis 15 kHz	15 kHz bis 100 kHz ^[3]
	50,000 mV	0,001 mV	1,5 + 80	0,4 + 60	0,7 + 60	0,8 + 60	3,5 + 220
	500,00 mV	0,01 mV	1,5 + 65	0,4 + 30	0,4 + 30	0,8 + 45	3,5 + 125
	1000,0 mV	0,1 mV	1,5 + 65	0,4 + 30	0,4 + 30	0,8 + 45	3,5 + 125
Spannung	5,0000 V	0,0001 V	1,5 + 65	0,4 + 30	0,6 + 30	1,5 + 45	3,5 + 125
	50,000 V	0,001 V	1,5 + 65	0,4 + 30	0,4 + 30	1,5 + 45	3,5 + 125
	500,00 V	0,01 V	1,5 + 65	0,4 + 30	0,4 + 30	-	-
	1000,0 V	0,1 V	1,5 + 65	0,4 + 45	0,4 + 45	-	-

Hinweise für AC+DC-Spannungsspezifikationen:

- 1 Eingangsimpedanz: Siehe Tabelle 7-17.
- 2 Diese Spezifikationen sind für Signaleingänge > 5% des Bereichs definiert.
- 3 Der zusätzliche, als Frequenz > 15 kHz und Signaleingang < 10% des Bereichs zu addierende Fehler: 3 Zähler von LSD pro kHz.
- 4 2% Bereichsüberschreitung in allen Bereichen außer AC 1.000 V.

Tabelle 7-5 Accuracy specifications \pm (% of reading + number of LSD) for AC+DC current

Funktion				Accuracy for AC+DC current [1][2]			
	Bereich	Auflösung	30 Hz bis 45 Hz	45 Hz bis 1 kHz	1 kHz bis 20 kHz	Overload protection	
	500,00 μA ^[3]	0,01 μΑ	1,1 + 25	0,8 + 25	0,8 + 25	440 mA	
Stromstärke	5000,0 μΑ	0,1 μΑ	1,1 + 25	0,8 + 25	0,8 + 25	10 × 35 mm	
	50,000 mA	0,001 mA	1,2 + 25	0,9 + 25	0,9 + 25	AC/DC 1000 V	
	440,00 mA	0,01 mA	1,2 + 25	0,9 + 25	0,9 + 25	30 kA/fast-acting	
	5,0000 A	0,0001 A	1,8 + 30 ^[4]	0,9 + 30	3,3 + 70 < 3A / 5 kHz	11 A	
	10,000 A	0,001 A	1,8 + 30 [4]	0,9 + 25	3,3 + 70 < 3A / 5 kHz	-	

Hinweise für AC+DC-Spannungsspezifikationen:

- 1 Stromstärke kann von 2,5 A bis zu 10 A kontinuierlich gemessen werden. Weitere 0,5% müssen zur angegebenen Genauigkeit addiert werden, wenn das gemessene Signal für maximal 30 Sekunden im Bereich von 10 A bis 20 A liegt. Lassen Sie das Messgerät nach Messung einer Stromstärke von > 10 A über einen Zeitraum abkühlen (im Status OFF), der doppelt so lang ist wie die zur Messung benötigte Zeit, bevor Sie niedrige Stromstärken messen.
- 2 Diese Spezifikationen sind für Signaleingänge > 5% des Bereichs definiert.
- 3 Eingangsstromstärke > 35 µArms.
- 4 Eingangsstromstärke < 3 Arms.
- **5** Für 5-A- und 10-A-Bereiche wurde die Frequenz für weniger als 5 kHz geprüft.

7 Spezifikationen

Kapazitätsspezifikationen

Tabelle 7-6 Kapazitätsspezifikationen

Bereich	Auflösung	Genauigkeit	Anzeigen der Aktualisierungsrate (ungefähr)
10,000 nF	0,001 nF	1% + 8	
100,00 nF	0,01 nF		
1000,0 nF	0,1 nF		4-mal/Sekunde
10,000 μF	0,001 μF		
100,00 μF	0,01 μF	— 1½+5	
1000,0 μF	0,1 μF		1-mal/Sekunde
10,000 mF	0,001 mF		0,1-mal/Sekunde
100,00 mF	0,01 mF	3% + 10	0,01-mal/Sekunde

Hinweise für Kapazitätsspezifikationen:

- 1 Überspannungsschutz: 1.000 Vrms für Stromkreise mit < 0,3 A Kurzschluss.
- 2 Verwenden Sie beim Schichtkondensator oder einem besseren Kondensators die Null-Funktion, um die Restgrößen auf null einzustellen.

Temperaturspezifikationen

Tabelle 7-7 Temperaturspezifikationen

Thermoelement	Bereich	Auflösung	Genauigkeit ^[1]
	–200 °C bis –40 °C	0,1 °C	1% + 3 °C
I/	–328 °F bis –40 °F	0,1 °F	1% + 5,4 °F
K	–40 °C bis 1372 °C	0,1 °C	1% + 1 °C
	–40 °F bis 2502 °F	0,1 °F	1% + 1,8 °F
	–210 °C bis –40 °C	0,1 °C	1% + 3 °C
	–346 °F bis –40 °F	0,1 °F	1% + 5,4 °F
J	–40 °C bis 1372 °C	0,1 °C	1% + 1 °C
	–40 °F bis 2502 °F	0,1 °F	1% + 1,8 °F

Hinweise für Temperaturspezifikationen:

- 1 Die Genauigkeit wird unter den folgenden Bedingungen spezifiziert:
 - Die Genauigkeit beinhaltet nicht die Toleranz der Thermoelementsonde. Der an das Messgerät angeschlossene Thermosensor sollte sich mindestens eine Stunde lang vor der Messung in der Betriebsumgebung befinden.
 - Reduzieren Sie den Wärmeeffekt mittels der Null-Funktion. Setzen Sie das Messgerät vor Verwendung der Null-Funktion in den Modus ohne Außentemperaturausgleich ([::::::] wird angezeigt) und lassen Sie das Thermoelement so nah wie möglich am Messgerät. Vermeiden Sie den Kontakt mit jeder Oberfläche, die eine von der Umgebungstemperatur abweichende Temperatur aufweist.
 - Bei Messung der Temperatur mit Bezug auf ein Temperatureichgerät versuchen Sie, sowohl das Eichgerät als auch das Messgerät nach einer externen Referenz einzurichten (ohne internen Außentemperaturausgleich). Werden sowohl Eichgerät als auch Messgerät nach einer internen Referenz eingerichtet (mit internem Außentemperaturausgleich), kann aufgrund von Unterschieden im Außentemperaturausgleich zwischen den beiden Geräten eine Abweichung zwischen den Messungen von Eichgerät und Messgerät auftreten.

Kapazitätsspezifikationen

Tabelle 7-8 Kapazitätsspezifikationen

Bereich	Auflösung	Genauigkeit	Minimale Eingangsfrequenz ^[1]
99,999 Hz	0,001 Hz	0,02% + 3 ^[2]	
999,99 Hz	0,01 Hz		
9,9999 kHz	0,0001 kHz	0,02% + 3	1 Hz
99,999 kHz	0,001 kHz	< 600 kHz	
999,99 kHz	0,01 kHz		

Hinweise für Frequenzspezifikationen:

- 1 Das Eingangssignal ist niedriger als das Produkt von 20.000.000 V × Hz (Produkt von Spannung und Frequenz); Überspannungsschutz: 1.000 V.
- 2 Bei Nicht-Rechtecksignalen müssen 5 zusätzliche Zähler hinzugefügt werden.
- 3 Bei Frequenzmessungen wählt das Multimeter automatisch den geeigneten Bereich.

Arbeitszyklus- und Impulsbreitenspezifikationen

Tabelle 7-9 Arbeitszyklus- und Impulsbreitenspezifikationen

Funktion	Mode	Bereich	Auflösung	Genauigkeit (bei Full Scale)
A who isometrice	DC-Kopplung	0,01% bis 99,99%	-	0,3% pro kHz + 0,3%
Arbeitszyklus	AC-Kopplung	5% bis 95%	-	0,3% pro kHz + 0,3%

Hinweise für Arbeitszyklusspezifikationen:

- 1 Die Genauigkeit für den Arbeitszyklus und die Impulsbreite basiert auf einer 5-V-Rechteckwelleneingabe in den DC-5-V-Bereich.
- 2 Bei einer AC-Kopplung kann der Arbeitszyklusbereich für eine Signalfrequenz > 20 Hz gemessen werden.

Tabelle 7-9 Arbeitszyklus- und Impulsbreitenspezifikationen

Funktion	Mode	Bereich	Auflösung	Genauigkeit (bei Full Scale)
lmanulahuaita	-	500 ms	0,01 ms	0,2% + 3
Impulsbreite -	-	2000 ms	0,1 ms	0,2% + 3

Hinweise für Impulsbreitenspezifikationen:

- 1 Die Genauigkeit für den Arbeitszyklus und die Impulsbreite basiert auf einer 5-V-Rechteckwelleneingabe in den DC-5-V-Bereich.
- 2 Positive oder negative Impulsbreite muss größer sein als 10 μs und der Bereich des Arbeitszyklus sollte berücksichtigt werden. Der Bereich der Impulsbreite wird durch die Frequenz des Signals bestimmt.

Spezifikationen für Frequenzempfindlichkeit

Für Spannungsmessungen

Tabelle 7-10 Frequenzempfindlichkeits- und Triggerpegelspezifikationen für Spannungsmessungen

Eingangsbereich ^[1]	Mindestempfindlichkeit (RMS-Sinuswelle)		Triggerniveau für DC-Kopplung	
	20 Hz bis 200 kHz	> 200 kHz bis 500 kHz	< 100 kHz	> 100 kHz bis 500 kHz
50 mV	10 mV	25 mV	10 mV	25 mV
500 mV	70 mV	150 mV	70 mV	150 mV
1000 mV	120 mV	300 mV	120 mV	300 mV
5 V	0,3 V	1,2 V	0,6 V	1,5 V
50 V	3 V	5 V	6 V	15 V
500 V	30 V < 100 kHz	-	60 V	-
1000 V	50 V < 100 kHz	-	120 V	-

Hinweise für Frequenzempfindlichkeits- und Triggerpegelspezifikationen für Spannungsmessungen:

1 Maximaler Eingang für angegebene Genauigkeit = 10 × Bereich oder 1.000 V.

7 Spezifikationen

Für Stromstärkemessungen

 Tabelle 7-11
 Frequenzempfindlichkeitsspezifikationen für Stromstärkemessungen

Finnangahamiah	Mindestempfindlichkeit (RMS-Sinuswelle)
Eingangsbereich	20 Hz bis 20 kHz
500 μA	100 μΑ
5000 μΑ	250 μΑ
50 mA	10 mA
440 mA	25 mA
5 A	1 A
10 A	2,5 A

Hinweise für Frequenzempfindlichkeits- und Triggerpegelspezifikationen für Stromstärkemessungen:

Spezifikationen für Spitzenwerthalten

Tabelle 7-12 Spitzenwerthalten-Spezifikationen für DC-Spannung- und Stromstärkemessungen

Signalbreite	Genauigkeit für DC-mV/V/Stromstärke
Einmaliges Signal > 1 ms	2% + 400 für alle Bereiche
Sich wiederholendes Signal > 250 μs	2% + 1000 für alle Bereiche

¹ Für maximalen Eingang siehe AC-Stromstärkenmessung.

Frequenzzählerspezifikationen

 Tabelle 7-13
 Frequenzzählerspezifikationen (Dividieren durch 1)

Bereich	Auflösung	Genauigkeit	Empfindlichkeit	Minimale Eingabefrequenz
99,999 Hz	0,001 Hz	0,02% + 3 [1]		
999,99 Hz	0,01 Hz		100>/	
9,9999 kHz	0,0001 kHz	0,002% + 5	100 mVrms	0,5 Hz
99,999 kHz	0,001 kHz	< 985 kHz		
999,99 kHz	0,01 kHz		200 mVrsm	

Tabelle 7-14 Frequenzzählerspezifikationen (Dividieren durch 100 [4])

Bereich	Auflösung	Genauigkeit	Empfindlichkeit	Minimale Eingabefrequenz
9,9999 MHz	0,0001 MHz	0,002% + 5	400 mVrms	– 1 MHz
99,999 MHz	0,001 MHz	< 20 MHz	600 mVrms	- I IVITZ

Hinweise für Frequenzzählerspezifikationen:

- 1 Alle Frequenzzähler sind bei der Messung von Signalen mit niedriger Spannung und niedriger Frequenz fehleranfällig. Abschirmung der Eingänge von externem Rauschen ist entscheidend für die Minimierung der Messfehler. Bei Nicht-Rechteckwellensignalen müssen 5 zusätzliche Zähler hinzugefügt werden.
- 2 Das maximale Messniveau beträgt < 30 Vpp.
- 3 Die Mindestmessfrequenz im unteren Frequenzbereich wird über die Einschaltoption festgelegt, um die Messrate zu beschleunigen.
- 4 Auf Sekundäranzeige angegeben.

7 Spezifikationen

Rechteckwellenausgabe

 Tabelle 7-15
 Spezifikationen für Rechteckwellenausgabe

Ausgabe ^[1]	Bereich	Genauigkeit
Frequenz	0,5, 1, 2, 5, 6, 10, 15, 20, 25, 30, 40, 50, 60, 75, 80, 100, 120, 150, 200, 240, 300, 400, 480, 600, 800, 1200, 1600, 2400, 4800 Hz	0,005% x Ausgangsfrequenz + 2 Zähler
Arbeitszyklus [2][4]	0,39% bis 99,60%	± 0,398% von Full Scale ^[3]
Impulsbreite ^{[2][4]}	1/Frequenz	0,2 ms + (Bereich/256)
Amplitude	Festgelegt: 0 bis + 2,8 V	± 0,2 V

Hinweise zu Spezifikationen für die Rechteckwellenausgabe:

- 1 Ausgangsimpedanz: maximal 3,5 k Ω .
- 2 Positive oder negative Impulsbreite muss größer sein als 50 ms, um den Arbeitszyklus oder die Impulsbreite unter verschiedenen Frequenzen einzustellen. Anderenfalls weicht die Genauigkeit und der Bereich von der Definition ab.
- 3 Für Signalfrequenzen über 1 kHz müssen zur Genauigkeit zusätzlich 0,1% je kHz hinzugefügt werden.
- 4 Die Genauigkeit für den Arbeitszyklus und die Impulsbreite basiert auf einer 5-V-Rechteckwelleneingabe ohne Divisionssignal.

Betriebsspezifikationen

Anzeigen der Aktualisierungsrate (ungefähr)

Tabelle 7-16 Anzeigen der Aktualisierungsrate (ungefähr)

Funktion	Häufigkeit/Sekunde
AC V	7
AC V + dB	7
DC V (V oder mV)	7
AC V (V oder mV)	7
AC+DC V (V oder mV)	2
Ω / nS	14
Diode	14
Kapazität	4 (< 100 μF)
DC A (µA, mA, oder A)	7
AC A (μA, mA, oder A)	7
AC+DC A (μA, mA, oder A)	2
Temperatur	6
Frequenz	1 (> 10 Hz)
Arbeitszyklus	0,5 (> 10 Hz)
Impulsbreite	0,5 (> 10 Hz)

HINWEIS

Das digitale Handmultimeter U1253B verfügt über **keine** Echtzeituhr. Es kann nur **EIN** Wert pro Sekunde protokolliert werden.

7 Spezifikationen

Eingangsimpedanz

Tabelle 7-17 Eingangsimpedanz

Funktion	Bereich	Eingangsimpedanz
_	50,000 mV	10,00 MΩ
	500,00 mV	10,00 MΩ
	1000,0 mV	10,00 MΩ
DC-Spannung [1][3]	5,0000 V	11,10 MΩ
	50,000 V	10,10 MΩ
	500,00 V	10,01 MΩ
_	1000,0 V	10,001 MΩ
	50,000 mV	10,00 MΩ
	500,00 mV	10,00 MΩ
	1000,0 mV	10,00 MΩ
AC-Spannung [2]	5,0000 V	10,00 MΩ
	50,000 V	10,00 MΩ
	500,00 V	10,00 MΩ
_	1000,0 V	10,00 MΩ
	50,000 mV	10,00 MΩ
	500,00 mV	10,00 MΩ
	1000,0 mV	10,00 MΩ
AC+DC-Spannung [2]	5,0000 V	11,10 M Ω // 10 M Ω
	50,000 V	10,10 M Ω // 10 M Ω
	500,00 V	10,01 M Ω // 10M Ω
	1000,0 V	10,001 MΩ // 10MΩ

Hinweise für Eingangsimpedanz:

- 1 Im Bereich zwischen 5 V und 1.000 V die angegebene Eingangsimpedanz parallel zu 10 M Ω bei dualer Anzeige.
- 2 Die angegebene Eingangsimpedanz (nominell) parallel zu < 100 pF.
- 3 Im Bereich von 5 V bis 1.000 V entspricht die angegebene Eingangsimpedanz 10 M Ω , wenn die Eingangsspannung >+3 V oder <-2 V beträgt.

www.agilent.com

Kontaktdaten

Um unsere Services, Garantieleistungen oder technische Unterstützung in Anspruch zu nehmen, rufen Sie uns unter einer der folgenden Telefonnummern an:

Vereinigte Staaten:

(Tel) 800 829 4444 (Fax) 800 829 4433

Kanada:

(Tel) 877 894 4414 (Fax) 800 746 4866

China:

(Tel) 800 810 0189 (Fax) 800 820 2816

Europa:

(Tel) 31 20 547 2111

Japan:

(Tel) (81) 426 56 7832 (Fax) (81) 426 56 7840

Korea:

(Tel) (080) 769 0800 (Fax) (080) 769 0900

Lateinamerika:

(Tel) (305) 269 7500

Taiwan:

(Tel) 0800 047 866 (Fax) 0800 286 331 Andere Länder im Asien-Pazifik-Raum: (Tel) (65) 6375 8100 (Fax) (65) 6755 0042

Oder besuchen Sie uns im Internet: www.agilent.com/find/assist

Änderungen der Produktspezifikationen und -beschreibungen in diesem Dokument vorbehalten. Aktuelle Änderungen finden Sie auf der Agilent Website.

© Agilent Technologies, Inc., 2009-2012

Siebte Auflage, 12. September 2012

U1253-90036

