

Digital Multimeter

AX-572

Instruction manual

1. SUMMARIZE

The meter is a stable multimeter with 40mm LCD display, driven by battery. It's widely used on measuring DCV, ACV, DCA, ACA, resistance, capacitance, diode, transistor, continuity test ,temperature auto power off /on and LCD back – light . It's an ideal tool for lab, factory and family.

2. SAFETY NOTE

The meter meets the standards of IEC1010. Read the operation manual carefully before operation.

- 1. Do not input limit over-ranged.
- 2. The voltage below 36V is safety. To avoid electric shock, check whether the test leads are connected correctly, whether the insulation is good when measuring over 36DCV or 25ACV.
- 3. Remove the test leads when changing function and range.
- 4. To select correct function and range, beware of error operation. ;
- 5. Do not operate the meter if battery case and back cover is not fixed.
- 6. Do not input voltage when measuring resistance.
- 7. Remove test leads from test point and turn off the power before replacing battery and fuse.
- 8. SAFETY SYMBOLS
- "A"EXISTS DANGEROUS VOLTAGE, "=" GND, "□"DUAL INSULATION
- "A"THE OPERATOR MUST REFER TO THE MANUAL, "LOW BATTERY

3. CHARACTERISTIC

3.1. GENERAL

- 1-1. Display:LCD displaying.
- 1-2. Max. displaying: 1999 (3 1/2digit) auto polarity indication.
- 1-3. Measuring method: dual slope A/D conversion.

- 1-4. Sampling rate: approx. 3 times/second.
- 1-5. Over range indication: the MSD displays"1" or"-1".
- 1-6. Low battery indication: " appears.
- 1-7. Operation environment: $(0\sim40)$ \square , R.H.<80%.
- 1-8. Power: 9Vx1 (NEDA1604/6F22 or equivalent model) .
- 1-9. Size: 175×93×55mm
- 1-10. Weight: approx. 400g (including battery).

3.2. TECHNICAL CHARACTERISTIC

- 2-1. Accuracy:±(a%xrdg+d) at (23±5)□, R.H.<75%, one year guaranteed from the production date.
- 2-2. TECHNICAL DATA(▲ indicate the function is available for this model)

RANGE	
DVC	A
ACV	A
DCA	A
ACA	A
Resistance	A
diode	A
capacitance	A
TRANSISTOR	A

2-2-1. DCV

RANGE	ACCURACY	RESOLUTI ON
200mV		100uV
2V		1mV
20V	±(0.5%+3)	10mV
200V		100mV
1000V	±(0.8%+10)	1V

Input resistance: $10M\Omega$ for all ranges.

Overload protection: 250V DV or AC peak value at 200mV range.

1000V DC or AC peak value at other ranges.

2-2-2. ACV

RANGE	ACCURACY	RESOLUTION
2V		1mV
2 4		''''
20V		10mV
201		101111
200V	±(0.8%+5)	100mV
200 V	=(0.07010)	1001111
750V	±(1.2%+10)	1V
, 50 v	±(1.∠/0+10)	I V
1		
1	1	

Input resistance: 10MΩ

Overload protection: 1000V DC or AC peak value

Frequency response : $(40\sim200)\,$ Hz

Display: sine wave RMS (mean value response)

2-2-3.DCA

RANGE	ACCURACY	RESOLUTION
20uA		0.01uA
2mA	±(0.8%+10)	1uA
200mA	±(1.2%+8)	100uA
20A	±(2.0%+5)	10mA

Max. input volt drop: 200Mv

Max. input current: 20A (the test time should be within 10 seconds)

Overload protection: 0.2A/250V ; 20A/250V fast-blown fuse

2-2-4.ACA

RANGE	ACCURACY	RESOLUTION
2mA	±(1.0%+15)	1uA
200mA	±(2.0%+5)	100uA
20A	±(3.0%+10)	10mA

Max. measuring volt drop: 200mV

Max. input current: 20A (the test time should be within 10 seconds)

Overload protection: 0.2A/250V ; 20A/250V fast-blown fuse

Frequency response: (40~200)Hz

Display: sine wave RMS (mean value response)

2-2-5. RESISTANCE (Ω)

RANGE	ACCURACY	RESOLUTION
200Ω	±(0.8%+5)	0.1Ω
2kΩ		1Ω
20kΩ	±(0.8%+3)	10Ω
200kΩ		100Ω
2ΜΩ		1kΩ
20ΜΩ	±(1.0%+25)	10kΩ

Open voltage: less than 0.7V

Overload protection: 250V DC and AC peak value

NOTE: at 200Ω range, the test leads should be short-circuit, and measure the down-lead

resistance, then, subtract from the real measuring.

WARNING: DO NOT input any voltage at resistance range for safety!

2-2-6. CAPACITANCE (C)

RANGE	ACCURACY	RESOLUTI ON
20nF		10pF
2uF	±(2.5%+20)	1nF
200uF	±(5.0%+10)	100nF

Overload protection: 36V DC or AC peak value

2-2-7.DIODE AND CONTINUITY TEST

Range	Displaying value	Test condition
→ •)))	Positive voltage drop of diode	The positive DC current is approx. 1mA negative voltage is approx. 3V
	Buzzer sounds , the resistance is less than $(70\pm20)\Omega$	open voltage is approx. 3V

Overload protection: 250V DC or AC peak value

Warning: DO NOT input any voltage at this range for safety!

2-2-8. Triode hFE test

Range	Display range	Test condition
hFE NPN or PNP	0~1000	Basic current is approx.10uA,Vce is approx.3V

4. OPERATION

4.1 Front panel description

- 1. Model
- 2. LCD display
- 3. Shine diode
- 4 .range knob
- 5 .20A current test jack
- 6."-" pole jack for capacitance, temp. and test accessory and less than 200mA current test jack.
- 7."+"pole jack for capacitance, temp. test accessory and GND.
- 8. "+"pole jack for volt, resistance and diode.
- 9. Transistor test jack
- 10. LCD back light/auto power off /on

4.2 DCV MEASUREMENT

- 1.Insert the black test lead to "COM" jack, the red one to V/Ω jack.
- 2.Set the range knob to a proper DCV range, connect the test leads across to the circuit under tested, the polarity and voltage of the point which red lead connect will display on LCD.

NOTE:

- 1.If the measured voltage is unsure beforehand, should set the range knob to the highest range, then, switch to a proper range according to the displayed value.
- 2.If LCD displays "1", it means over range, should set the range knob to a higher range.

4.3 ACV MEASUREMENT

- 1.Insert the black test lead to "COM" jack, the red one to V/Ω jack.
- 2. Set the range knob to a proper ACV range, connect the test leads across to the circuit under tested.

NOTE:

- 1.If the measured voltage is unsure beforehand, should set the range knob to the highest range, then, switch to a proper range according to the displayed value.
- 2.If LCD displays "1", it means over range, should set the range knob to a higher range.

4.4 DCA MEASUREMENT

- 1.Insert the black test lead to "COM" jack and the red one to "mA" jack (max. 200mA) , or insert the red one to "20A" jack (max. 20A) .
- 2.Set the range knob to a proper DCA range, connect the test leads across to the circuit under tested, the current value and polarity of the point which red lead connect will display on LCD.

NOTE:

- 1.If the measured current is unsure beforehand, should set the range knob to a higher range, then, switch to a proper range according to the displayed value.
- 2.If LCD displays "1", it means overrange, should set the range knob to a higher range.
- 3. Pay attention to measure 20A.. Continuously measuring large current may heat the circuit, affect the accuracy, eve damage the meter.

4.5 ACV MEASUREMENT

- 1.Insert the black test lead to "COM" jack and the red one to "mA" jack (max. 200mA), or insert the red one to "20A" jack (max. 20A).
- 2.Set the range knob to a proper ACA range; connect the test leads across to the circuit under tested.

NOTE:

- 1.If the measured current range is unsure beforehand, should set the range knob to the highest range, then set to a proper range according to the displayed value.
- 2.If LCD displays "1", it means overrange, should set the range knob to a higher range.
- 3. Pay attention to measure 20A.. Continuously measuring large current may heat the circuit, affect the accuracy, eve damage the meter.

4.6 RESISTANCE MEASUREMENT

- 1.Insert the black test lead to "COM" jack and the red one to "V/ Ω " jack.
- Set the range knob to a proper resistance range, connect the test leads across to the resistance under measured.

NOTE:

- 1.If the resistance value being measured exceeds the max value of the range selected, LCD displays "1", thus, should set the range knob to a higher range. When the resistance is over $1M\Omega$, the meter may take a few seconds to stabilize. This is normal for high resistance readings.
- 2. When input terminal is in open circuit, overload displays.
- When measuring in-line resistance, be sure that power is off and all capacitors are released completely.

4.7 CAPACITANCE MEASUREMENT

- 1.Insert the red test lead to "COM" terminal and the black one to "mA" jack.
- 2. Set the range knob to a proper capacitance range, connect the test leads to the capacitor under

measured (note: the polarity of red test lead is "+").

NOTE:

- 1.If the capacitance range under measured is unsure beforehand, should set the range knob to the highest range, then, set to a proper range according to the displayed value.
- 2.If LCD displays"1", it means over range, should set the range knob to a higher range.
- 3.Before measuring, LCD display might not be zero, the residual reading will be decreased gradually and could be disregarded.
- 4.When measuring large capacitance, if creeps seriously or break capacitance, LCD will display some instability value.
- 5. Discharge all capacitors completely before capacitance measurement to avoid damage.

6.UNIT: 1uF =1000nF 1nF=1000pF

4.8 DIODE AND CONTINUITY TEST

- 1.Insert the black test lead to "COM" terminal and the red one to V/Ω jack(Note: the polarity of red test lead is"+").
- 2.Set the range knob to range, connect the test leads to the diode under measured, reading is the approximation of the diode positive volt drop.
- 3. Connect the test leads to two points of the measured circuit, if buzzer sounds, the resistance is lower than approx. $(70\pm20)\Omega$.

4.9 TRIODE hFE

- 1.Set the range knob to hFE.
- Verify the type of the transistor is NPN or PNP, insert the emitter, basic and collector to the proper jack on test accessory.

4.10 AUTO POWER-OFF AND LCD BACKLIGHT ON

When power on ,LCD screen showing "APO" ,mean the meter in automatic power-off mode , After 15 minutes, the meter is auto power-off to be in sleepy mode . Shortly and repeatly press LCD backlight key , light on/off . If no need auto power off , press LCD backlight key for 2 seconds , the "APO" will

disappear and exit the status of auto power-off . If need auto power off ,Press LCD backlight key for 2 seconds, LCD screen showed "APO" , in circulation .

5.MAINTENANCE

- DO NOT try to verify the circuit for it's a precision meter.
- 1. Beware of waterproof, dustproof and shockproof.
- 2.Do not operate and store the meter in the circumstance of high temperature, high humidity, and flammability, explosive and strong magnetic field.
- 3.Use the damp cloth and soft solvent to clean the meter, do not use abrasive and alcohol.
- 4.If do not operate it for a long time, should take out the battery.
- 4-1. When LCD displays " == " symbol, should replace the battery as below:
- 4-1-1. Take out the holster and drop out the battery case.
- 4-1-2. Take out the battery and replace a new one. It's better to use alkalescence battery for long time use.
- 4-1-3. Fix the battery case and take on the holster.

6. If the meter does not work properly, check the meter as following:

CONDITIONS	WAY TO SOLVE
NO DISPLAYING	●Power is off
	■Replace battery
symbol displays	■Replace battery
NO CURRENT INPUT	●Replace fuse
BIG ERROR	Replace battery

